{"title":"网络中的核心-外围结构:一个统计分析","authors":"Eric Yanchenko, Srijan Sengupta","doi":"10.1214/23-ss141","DOIUrl":null,"url":null,"abstract":"Many real-world networks are theorized to have core-periphery structure consisting of a densely-connected core and a loosely-connected periphery. While this phenomenon has been extensively studied in a range of scientific disciplines, it has not received sufficient attention in the statistics community. In this expository article, our goal is to raise awareness about this topic and encourage statisticians to address the many open inference problems in this area. To this end, we first summarize the current research landscape by reviewing the metrics and models that have been used for quantitative studies on core-periphery structure. Next, we formulate and explore various inferential problems in this context, such as estimation, hypothesis testing, and Bayesian inference, and discuss related computational techniques. We also outline the multidisciplinary scientific impact of core-periphery structure in a number of real-world networks. Throughout the article, we provide our own interpretation of the literature from a statistical perspective, with the goal of prioritizing open problems where contribution from the statistics community will be most effective and important.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":null,"pages":null},"PeriodicalIF":11.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Core-periphery structure in networks: A statistical exposition\",\"authors\":\"Eric Yanchenko, Srijan Sengupta\",\"doi\":\"10.1214/23-ss141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world networks are theorized to have core-periphery structure consisting of a densely-connected core and a loosely-connected periphery. While this phenomenon has been extensively studied in a range of scientific disciplines, it has not received sufficient attention in the statistics community. In this expository article, our goal is to raise awareness about this topic and encourage statisticians to address the many open inference problems in this area. To this end, we first summarize the current research landscape by reviewing the metrics and models that have been used for quantitative studies on core-periphery structure. Next, we formulate and explore various inferential problems in this context, such as estimation, hypothesis testing, and Bayesian inference, and discuss related computational techniques. We also outline the multidisciplinary scientific impact of core-periphery structure in a number of real-world networks. Throughout the article, we provide our own interpretation of the literature from a statistical perspective, with the goal of prioritizing open problems where contribution from the statistics community will be most effective and important.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ss141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ss141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Core-periphery structure in networks: A statistical exposition
Many real-world networks are theorized to have core-periphery structure consisting of a densely-connected core and a loosely-connected periphery. While this phenomenon has been extensively studied in a range of scientific disciplines, it has not received sufficient attention in the statistics community. In this expository article, our goal is to raise awareness about this topic and encourage statisticians to address the many open inference problems in this area. To this end, we first summarize the current research landscape by reviewing the metrics and models that have been used for quantitative studies on core-periphery structure. Next, we formulate and explore various inferential problems in this context, such as estimation, hypothesis testing, and Bayesian inference, and discuss related computational techniques. We also outline the multidisciplinary scientific impact of core-periphery structure in a number of real-world networks. Throughout the article, we provide our own interpretation of the literature from a statistical perspective, with the goal of prioritizing open problems where contribution from the statistics community will be most effective and important.
期刊介绍:
Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.