Irene van den Broek , Qin Fu , Stuart Kushon , Michael P. Kowalski , Kevin Millis , Andrew Percy , Ronald J. Holewinski , Vidya Venkatraman , Jennifer E. Van Eyk
{"title":"体积吸收微进样在循环蛋白生物标志物的稳健、高通量质谱定量分析中的应用","authors":"Irene van den Broek , Qin Fu , Stuart Kushon , Michael P. Kowalski , Kevin Millis , Andrew Percy , Ronald J. Holewinski , Vidya Venkatraman , Jennifer E. Van Eyk","doi":"10.1016/j.clinms.2017.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Volumetric absorptive micro sampling (VAMS™) allows accurate sampling of 10<!--> <!-->µL of blood from a minimally invasive finger prick and could enable remote personalized health monitoring. Moreover, VAMS overcomes effects from hematocrit and sample heterogeneity associated with dried blood spots (DBS). We describe the first application of VAMS with the Mitra® microsampling device for the quantification of protein biomarkers using an automated, high-throughput sample preparation method coupled with mass spectrometric (MS) detection.</p><p>The analytical performance of the developed workflow was evaluated for 10 peptides from six clinically relevant proteins: apolipoproteins A-I, B, C-I, C-III, E, and human serum albumin (HSA). Extraction recovery from blood with three different levels of hematocrit varied between 100% and 111% for all proteins. Within-day and total assay reproducibility (i.e., 5 replicates on 5<!--> <!-->days) ranged between 3.2–10.4% and 3.4–12.6%, respectively. In addition, after 22<!--> <!-->weeks of storage of the Mitra microsampling devices at −80<!--> <!-->°C, all peptide responses were within ±15% deviation from the initial response. Application to data-independent acquisition (DIA) MS further demonstrated the potential for broad applicability and the general robustness of the automated workflow by reproducible detection of 1661 peptides from 423 proteins (average 15.7%CV (n<!--> <!-->=<!--> <!-->3) in peptide abundance), correlating to peptide abundances in corresponding plasma (R<!--> <!-->=<!--> <!-->0.8383).</p><p>In conclusion, we have developed an automated workflow for efficient extraction, digestion, and MS analysis of a variety of proteins in a fixed small volume of dried blood (i.e., 10<!--> <!-->µL). This robust and high-throughput workflow will create manifold opportunities for the application of remote, personalized disease biomarker monitoring.</p></div>","PeriodicalId":48565,"journal":{"name":"Clinical Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.clinms.2017.08.004","citationCount":"33","resultStr":"{\"title\":\"Application of volumetric absorptive microsampling for robust, high-throughput mass spectrometric quantification of circulating protein biomarkers\",\"authors\":\"Irene van den Broek , Qin Fu , Stuart Kushon , Michael P. Kowalski , Kevin Millis , Andrew Percy , Ronald J. Holewinski , Vidya Venkatraman , Jennifer E. Van Eyk\",\"doi\":\"10.1016/j.clinms.2017.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Volumetric absorptive micro sampling (VAMS™) allows accurate sampling of 10<!--> <!-->µL of blood from a minimally invasive finger prick and could enable remote personalized health monitoring. Moreover, VAMS overcomes effects from hematocrit and sample heterogeneity associated with dried blood spots (DBS). We describe the first application of VAMS with the Mitra® microsampling device for the quantification of protein biomarkers using an automated, high-throughput sample preparation method coupled with mass spectrometric (MS) detection.</p><p>The analytical performance of the developed workflow was evaluated for 10 peptides from six clinically relevant proteins: apolipoproteins A-I, B, C-I, C-III, E, and human serum albumin (HSA). Extraction recovery from blood with three different levels of hematocrit varied between 100% and 111% for all proteins. Within-day and total assay reproducibility (i.e., 5 replicates on 5<!--> <!-->days) ranged between 3.2–10.4% and 3.4–12.6%, respectively. In addition, after 22<!--> <!-->weeks of storage of the Mitra microsampling devices at −80<!--> <!-->°C, all peptide responses were within ±15% deviation from the initial response. Application to data-independent acquisition (DIA) MS further demonstrated the potential for broad applicability and the general robustness of the automated workflow by reproducible detection of 1661 peptides from 423 proteins (average 15.7%CV (n<!--> <!-->=<!--> <!-->3) in peptide abundance), correlating to peptide abundances in corresponding plasma (R<!--> <!-->=<!--> <!-->0.8383).</p><p>In conclusion, we have developed an automated workflow for efficient extraction, digestion, and MS analysis of a variety of proteins in a fixed small volume of dried blood (i.e., 10<!--> <!-->µL). This robust and high-throughput workflow will create manifold opportunities for the application of remote, personalized disease biomarker monitoring.</p></div>\",\"PeriodicalId\":48565,\"journal\":{\"name\":\"Clinical Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.clinms.2017.08.004\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Mass Spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2376999817300181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Mass Spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2376999817300181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
Application of volumetric absorptive microsampling for robust, high-throughput mass spectrometric quantification of circulating protein biomarkers
Volumetric absorptive micro sampling (VAMS™) allows accurate sampling of 10 µL of blood from a minimally invasive finger prick and could enable remote personalized health monitoring. Moreover, VAMS overcomes effects from hematocrit and sample heterogeneity associated with dried blood spots (DBS). We describe the first application of VAMS with the Mitra® microsampling device for the quantification of protein biomarkers using an automated, high-throughput sample preparation method coupled with mass spectrometric (MS) detection.
The analytical performance of the developed workflow was evaluated for 10 peptides from six clinically relevant proteins: apolipoproteins A-I, B, C-I, C-III, E, and human serum albumin (HSA). Extraction recovery from blood with three different levels of hematocrit varied between 100% and 111% for all proteins. Within-day and total assay reproducibility (i.e., 5 replicates on 5 days) ranged between 3.2–10.4% and 3.4–12.6%, respectively. In addition, after 22 weeks of storage of the Mitra microsampling devices at −80 °C, all peptide responses were within ±15% deviation from the initial response. Application to data-independent acquisition (DIA) MS further demonstrated the potential for broad applicability and the general robustness of the automated workflow by reproducible detection of 1661 peptides from 423 proteins (average 15.7%CV (n = 3) in peptide abundance), correlating to peptide abundances in corresponding plasma (R = 0.8383).
In conclusion, we have developed an automated workflow for efficient extraction, digestion, and MS analysis of a variety of proteins in a fixed small volume of dried blood (i.e., 10 µL). This robust and high-throughput workflow will create manifold opportunities for the application of remote, personalized disease biomarker monitoring.
期刊介绍:
Clinical Mass Spectrometry publishes peer-reviewed articles addressing the application of mass spectrometric technologies in Laboratory Medicine and Clinical Pathology with the focus on diagnostic applications. It is the first journal dedicated specifically to the application of mass spectrometry and related techniques in the context of diagnostic procedures in medicine. The journal has an interdisciplinary approach aiming to link clinical, biochemical and technological issues and results.