使用AI/ML快速有效地探索和开发

A. Aming
{"title":"使用AI/ML快速有效地探索和开发","authors":"A. Aming","doi":"10.2118/207377-ms","DOIUrl":null,"url":null,"abstract":"\n See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset.\n The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using AI/ML to Explore & Develop Quickly and Efficiently\",\"authors\":\"A. Aming\",\"doi\":\"10.2118/207377-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset.\\n The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.\",\"PeriodicalId\":10981,\"journal\":{\"name\":\"Day 4 Thu, November 18, 2021\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 18, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207377-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207377-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解如何将训练有素的人工智能(AI) /机器学习(ML)技术应用于3D地震数据卷,从而快速对整个卷或企业地震数据库进行无偏见的数据驱动评估。无论是使用现场硬件还是基于云的大型集群进行分析,这种自动化方法都为任何数据集的解释和前景分析提供了无与伦比的见解。人工智能(AI) /机器学习(ML)技术使用无监督遗传算法创建称为地质种群的波形族,用于导出振幅,结构(时间或深度取决于输入的3D地震体积)和新的地震适应度属性。我们将展示如何使用适应度来解释三维地震体的每个峰、谷和零交叉的古地貌和相图。通过构造、振幅和适应度属性图,勘探与生产(E&P)团队可以利用整个三维地震数据量快速评估和降低与石油系统相关的地质和地球物理(G&G)风险和不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using AI/ML to Explore & Develop Quickly and Efficiently
See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset. The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wellbore Cleanness Under Total Losses in Horizontal Wells: The Field Study Integrating Rock Typing Methods Including Empirical, Deterministic, Statistical, Probabilistic, Predictive Techniques and New Applications for Practical Reservoir Characterization Real Time Implementation of ESP Predictive Analytics - Towards Value Realization from Data Science The Use of 5G Technologies in the Digital Transformation of the Oil/Gas Industry Recent Case Histories of Multilateral Systems Enabling Thru Tubing Intervention in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1