机器学习应用于NDVI图像预测甘蔗产量

Luiz Paulo Souza Rodrigues, Danilo Roberto Pereira
{"title":"机器学习应用于NDVI图像预测甘蔗产量","authors":"Luiz Paulo Souza Rodrigues, Danilo Roberto Pereira","doi":"10.5747/ce.2021.v13.n4.e378","DOIUrl":null,"url":null,"abstract":"This article presents an approach through models based on ML (Machine Learning) applied to NDVI (Normalized Difference Vegetation Index) images to estimate productivity in the sugarcane crop. The use of human techniques based on cognitive experiences is predominant to anticipate productivity. The images used were provided by the NDVI Sentinel-2 satellite, since the datasets were obtained from two georeferenced points, two plots and applied to the images for extraction and processing. Two predictive algorithms are used for the models: (i) CNN (Convolution Neural Network), (ii) KNN (K-Nearest Neighbors), (iii) RF (Random Forest), (iv) SVM (Support Vector Machie) , (v) AdaBoost (Adaptive Boost). The RF algorithm was presented or more efficient, so that the results for the DP (Standard Deviation) and the formula for the MSE (Mean Square Error) obtained 30.71 tons (t) and the MAE (Mean Absolute Error) obtained 3.73(t). Regarding the estimates, the DP formula for the MSE obtains 34.71 (t) and the MAE of 3.97 (t). The EM (Mean Error) for the estimates was -8.80% and the RF algorithm was 0.012%. The results will show consistency for the productivity estimates in the sugarcane crop.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"APRENDIZADO DE MÁQUINA APLICADO EM IMAGEM NDVI PARA PREVISÃO DA PRODUTIVIDADE DA CANA-DE-AÇÚCAR\",\"authors\":\"Luiz Paulo Souza Rodrigues, Danilo Roberto Pereira\",\"doi\":\"10.5747/ce.2021.v13.n4.e378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an approach through models based on ML (Machine Learning) applied to NDVI (Normalized Difference Vegetation Index) images to estimate productivity in the sugarcane crop. The use of human techniques based on cognitive experiences is predominant to anticipate productivity. The images used were provided by the NDVI Sentinel-2 satellite, since the datasets were obtained from two georeferenced points, two plots and applied to the images for extraction and processing. Two predictive algorithms are used for the models: (i) CNN (Convolution Neural Network), (ii) KNN (K-Nearest Neighbors), (iii) RF (Random Forest), (iv) SVM (Support Vector Machie) , (v) AdaBoost (Adaptive Boost). The RF algorithm was presented or more efficient, so that the results for the DP (Standard Deviation) and the formula for the MSE (Mean Square Error) obtained 30.71 tons (t) and the MAE (Mean Absolute Error) obtained 3.73(t). Regarding the estimates, the DP formula for the MSE obtains 34.71 (t) and the MAE of 3.97 (t). The EM (Mean Error) for the estimates was -8.80% and the RF algorithm was 0.012%. The results will show consistency for the productivity estimates in the sugarcane crop.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n4.e378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n4.e378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于ML(机器学习)模型的方法,该模型应用于NDVI(归一化植被指数)图像来估计甘蔗作物的生产力。基于认知经验的人类技术的使用是预测生产力的主要手段。所使用的图像由NDVI Sentinel-2卫星提供,因为数据集来自两个地理参考点,两个地块,并应用于图像进行提取和处理。模型使用了两种预测算法:(i) CNN(卷积神经网络),(ii) KNN (k -近邻),(iii) RF(随机森林),(iv) SVM(支持向量机),(v) AdaBoost(自适应Boost)。提出了一种更有效的射频算法,使得DP (Standard Deviation)和MSE (Mean Square Error)的计算结果为30.71吨(t), MAE (Mean Absolute Error)的计算公式为3.73吨(t)。对于估计,MSE的DP公式为34.71 (t), MAE为3.97 (t),估计的EM (Mean Error)为-8.80%,RF算法为0.012%。结果将显示甘蔗作物生产力估计的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APRENDIZADO DE MÁQUINA APLICADO EM IMAGEM NDVI PARA PREVISÃO DA PRODUTIVIDADE DA CANA-DE-AÇÚCAR
This article presents an approach through models based on ML (Machine Learning) applied to NDVI (Normalized Difference Vegetation Index) images to estimate productivity in the sugarcane crop. The use of human techniques based on cognitive experiences is predominant to anticipate productivity. The images used were provided by the NDVI Sentinel-2 satellite, since the datasets were obtained from two georeferenced points, two plots and applied to the images for extraction and processing. Two predictive algorithms are used for the models: (i) CNN (Convolution Neural Network), (ii) KNN (K-Nearest Neighbors), (iii) RF (Random Forest), (iv) SVM (Support Vector Machie) , (v) AdaBoost (Adaptive Boost). The RF algorithm was presented or more efficient, so that the results for the DP (Standard Deviation) and the formula for the MSE (Mean Square Error) obtained 30.71 tons (t) and the MAE (Mean Absolute Error) obtained 3.73(t). Regarding the estimates, the DP formula for the MSE obtains 34.71 (t) and the MAE of 3.97 (t). The EM (Mean Error) for the estimates was -8.80% and the RF algorithm was 0.012%. The results will show consistency for the productivity estimates in the sugarcane crop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
期刊最新文献
ESTUDO DE TRÁFEGO DE VEÍCULOS, INTERVENÇÕES DE SINALIZAÇÕES E URBANISMO TÁTICO NO ENTORNO DO HOSPITAL DA VIDA COMO POLO GERADOR DE VIAGENS ENGLISHVR: USO DE REALIDADE VIRTUAL NO ENSINO DA LÍNGUA INGLESA NAS ESCOLAS DE ENSINO FUNDAMENTAL ESTADUAL BRASILEIRO ANÁLISE DE METAIS POTENCIALMENTE CONTAMINANTES NOS PEIXES DO RIO TAQUARI, BACIA DO RIO PARAGUAI, MUNICÍPIO DE COXIM-MS MODELO SEMÂNTICO DE OPERAÇÕES ARITMÉTICAS E LÓGICAS PARA HARDWARE VIRTUAL PHYSIOVR: FERRAMENTA DE REALIDADE VIRTUAL APLICADO NA REABILITAÇÃO CARDIOVASCULAR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1