S30432和TP310HCbN涂层在模拟620℃超超临界锅炉煤灰/气体环境中的高温腐蚀行为

Yugang Liu, Yinhe Liu, Chunhong Mo, Minqiang Zhang, Meng Dong, Shaocheng Pan, Shenming Ran
{"title":"S30432和TP310HCbN涂层在模拟620℃超超临界锅炉煤灰/气体环境中的高温腐蚀行为","authors":"Yugang Liu, Yinhe Liu, Chunhong Mo, Minqiang Zhang, Meng Dong, Shaocheng Pan, Shenming Ran","doi":"10.1002/maco.202113014","DOIUrl":null,"url":null,"abstract":"The high‐temperature sulfur corrosion resistance of S30432 and TP310HCbN typically used in the superheater and reheater of a 620°C ultra‐supercritical boiler is investigated in this study. Samples coated with coal ash are placed in a device filled with simulated flue gas at 650°C and 700°C, respectively, for 2000 h. The samples are then analyzed through X‐ray diffraction, scanning electron microscopy, and energy‐dispersive spectroscopy. S30432 is mainly oxidized under 650°C and 0.2% SO2 volume concentration, and the weight reduction is 6.6 mg cm−2. However, under 700°C and 0.3% SO2 volume concentration, severe sulfidation reaction occurs, sharply accelerating high‐temperature corrosion. As a result, weight reduction up to 41.8 mg cm−2 occurs. Although sulfidation reaction also occurs in TP310HCbN, there is no serious corrosion; the corrosion rate reduces in the later stages of the experiment, and a weight increase of 2.4 mg cm−2 is observed. After 11 520 h of the actual operation of the 1000 MW 620°C boiler, there is no obvious high‐temperature corrosion in the high‐temperature areas without coke‐block adhesion. These results indicate that S30432 and TP310HCbN satisfy the requirements of 620°C ultra‐supercritical boilers burning high‐sulfur coal.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"32 1","pages":"1222 - 1235"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High‐temperature corrosion behavior of S30432 and TP310HCbN coatings in simulated 620°C ultra‐supercritical boiler coal ash/gas environment\",\"authors\":\"Yugang Liu, Yinhe Liu, Chunhong Mo, Minqiang Zhang, Meng Dong, Shaocheng Pan, Shenming Ran\",\"doi\":\"10.1002/maco.202113014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high‐temperature sulfur corrosion resistance of S30432 and TP310HCbN typically used in the superheater and reheater of a 620°C ultra‐supercritical boiler is investigated in this study. Samples coated with coal ash are placed in a device filled with simulated flue gas at 650°C and 700°C, respectively, for 2000 h. The samples are then analyzed through X‐ray diffraction, scanning electron microscopy, and energy‐dispersive spectroscopy. S30432 is mainly oxidized under 650°C and 0.2% SO2 volume concentration, and the weight reduction is 6.6 mg cm−2. However, under 700°C and 0.3% SO2 volume concentration, severe sulfidation reaction occurs, sharply accelerating high‐temperature corrosion. As a result, weight reduction up to 41.8 mg cm−2 occurs. Although sulfidation reaction also occurs in TP310HCbN, there is no serious corrosion; the corrosion rate reduces in the later stages of the experiment, and a weight increase of 2.4 mg cm−2 is observed. After 11 520 h of the actual operation of the 1000 MW 620°C boiler, there is no obvious high‐temperature corrosion in the high‐temperature areas without coke‐block adhesion. These results indicate that S30432 and TP310HCbN satisfy the requirements of 620°C ultra‐supercritical boilers burning high‐sulfur coal.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"32 1\",\"pages\":\"1222 - 1235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202113014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202113014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了620℃超超临界锅炉过热器和再热器中常用的S30432和TP310HCbN的耐高温硫腐蚀性能。将涂有煤灰的样品分别置于充满模拟烟气的装置中,温度分别为650°C和700°C,时间为2000小时。然后通过X射线衍射、扫描电子显微镜和能量色散光谱对样品进行分析。S30432在650℃和0.2% SO2体积浓度下主要氧化,重量减轻6.6 mg cm−2。然而,在700°C和0.3% SO2体积浓度下,发生严重的硫化反应,急剧加速高温腐蚀。结果,重量减少高达41.8 mg cm−2。TP310HCbN虽然也发生硫化反应,但腐蚀不严重;在实验后期,腐蚀速率降低,质量增加2.4 mg cm−2。1000mw 620℃锅炉实际运行11 520 h后,在无焦块粘连的高温区域未发现明显的高温腐蚀现象。结果表明,S30432和TP310HCbN满足620℃超超临界锅炉燃烧高硫煤的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High‐temperature corrosion behavior of S30432 and TP310HCbN coatings in simulated 620°C ultra‐supercritical boiler coal ash/gas environment
The high‐temperature sulfur corrosion resistance of S30432 and TP310HCbN typically used in the superheater and reheater of a 620°C ultra‐supercritical boiler is investigated in this study. Samples coated with coal ash are placed in a device filled with simulated flue gas at 650°C and 700°C, respectively, for 2000 h. The samples are then analyzed through X‐ray diffraction, scanning electron microscopy, and energy‐dispersive spectroscopy. S30432 is mainly oxidized under 650°C and 0.2% SO2 volume concentration, and the weight reduction is 6.6 mg cm−2. However, under 700°C and 0.3% SO2 volume concentration, severe sulfidation reaction occurs, sharply accelerating high‐temperature corrosion. As a result, weight reduction up to 41.8 mg cm−2 occurs. Although sulfidation reaction also occurs in TP310HCbN, there is no serious corrosion; the corrosion rate reduces in the later stages of the experiment, and a weight increase of 2.4 mg cm−2 is observed. After 11 520 h of the actual operation of the 1000 MW 620°C boiler, there is no obvious high‐temperature corrosion in the high‐temperature areas without coke‐block adhesion. These results indicate that S30432 and TP310HCbN satisfy the requirements of 620°C ultra‐supercritical boilers burning high‐sulfur coal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Pulse Current Cathodic Protection Technology for Long‐Distance Pipeline: A Review On the Impact of Cathodic Polarization on the Chloride Threshold of Carbon Steel in Alkaline Solutions Corrosion Behavior and Evaluation Method of Pipeline Steel Under Dynamic AC Interference: A Study Effect of Corrosion Wastage on the Limit States of Monopile‐Type Offshore Wind Turbines Under Combined Wind and Rotor Blade Rotation Corrosion Behavior of Heat‐Treated Fe‐Based Shape Memory Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1