用于可穿戴计算机的轻量级功率感知和可扩展运动监测:传感器指尖的挖掘和识别技术

Vitali Loseu, Jerry Mannil, R. Jafari
{"title":"用于可穿戴计算机的轻量级功率感知和可扩展运动监测:传感器指尖的挖掘和识别技术","authors":"Vitali Loseu, Jerry Mannil, R. Jafari","doi":"10.1145/2077546.2077554","DOIUrl":null,"url":null,"abstract":"Activity monitoring using Body Sensor Networks(BSN) has gained much attention from the scientific community due to its recreational and medical applications. Suggested techniques for activity monitoring face two major problem. First, systems have to be trained for the individual subjects due to the heterogeneity of the BSN data. While most solutions can address this problem on a small data set, they have no mechanics for automatic scaling of the solution as the data set increases. Second, the battery limitations of the BSN severely limit the maximum deployment time for the continuous monitoring. This problem is often solved by shifting some processing to the local sensor nodes to avoid a very heavy communication cost. However, little work has been done to optimize the sensing and processing cost of the action recognition. In this paper, we propose an action recognition approach based on the BSN repository. We show how the information of a large repository can be automatically used to customize the processing on sensor nodes based on a limited and automated training process. We also investigate the power cost of such a repository mining approach on the sensor nodes based on our implementation. To assess the power requirement, we define an energy model for data sensing and processing. We demonstrate the relationship between the activity recognition precision and the power consumption of the system during continuous action monitoring. We demonstrate the energy effectiveness of our approach with a classification accuracy constraint based on limited data repository.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"91 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lightweight power aware and scalable movement monitoring for wearable computers: a mining and recognition technique at the fingertip of sensors\",\"authors\":\"Vitali Loseu, Jerry Mannil, R. Jafari\",\"doi\":\"10.1145/2077546.2077554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity monitoring using Body Sensor Networks(BSN) has gained much attention from the scientific community due to its recreational and medical applications. Suggested techniques for activity monitoring face two major problem. First, systems have to be trained for the individual subjects due to the heterogeneity of the BSN data. While most solutions can address this problem on a small data set, they have no mechanics for automatic scaling of the solution as the data set increases. Second, the battery limitations of the BSN severely limit the maximum deployment time for the continuous monitoring. This problem is often solved by shifting some processing to the local sensor nodes to avoid a very heavy communication cost. However, little work has been done to optimize the sensing and processing cost of the action recognition. In this paper, we propose an action recognition approach based on the BSN repository. We show how the information of a large repository can be automatically used to customize the processing on sensor nodes based on a limited and automated training process. We also investigate the power cost of such a repository mining approach on the sensor nodes based on our implementation. To assess the power requirement, we define an energy model for data sensing and processing. We demonstrate the relationship between the activity recognition precision and the power consumption of the system during continuous action monitoring. We demonstrate the energy effectiveness of our approach with a classification accuracy constraint based on limited data repository.\",\"PeriodicalId\":91386,\"journal\":{\"name\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"volume\":\"91 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2077546.2077554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2077546.2077554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于身体传感器网络(BSN)的活动监测因其在娱乐和医疗方面的应用而受到科学界的广泛关注。建议的活动监测技术面临两个主要问题。首先,由于BSN数据的异质性,系统必须针对个体受试者进行训练。虽然大多数解决方案可以在小数据集上解决这个问题,但它们没有随着数据集的增加而自动扩展解决方案的机制。其次,BSN的电池限制严重限制了连续监控的最大部署时间。这个问题通常通过将一些处理转移到本地传感器节点来解决,以避免非常沉重的通信成本。然而,对动作识别的感知和处理成本进行优化的研究很少。本文提出了一种基于BSN知识库的动作识别方法。我们展示了如何基于有限的自动化训练过程自动使用大型存储库的信息来定制传感器节点上的处理。基于我们的实现,我们还研究了这种存储库挖掘方法在传感器节点上的功耗。为了评估功率需求,我们定义了一个用于数据感知和处理的能量模型。我们论证了在连续动作监测过程中,动作识别精度与系统功耗之间的关系。我们通过基于有限数据存储库的分类精度约束来证明我们的方法的能量有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight power aware and scalable movement monitoring for wearable computers: a mining and recognition technique at the fingertip of sensors
Activity monitoring using Body Sensor Networks(BSN) has gained much attention from the scientific community due to its recreational and medical applications. Suggested techniques for activity monitoring face two major problem. First, systems have to be trained for the individual subjects due to the heterogeneity of the BSN data. While most solutions can address this problem on a small data set, they have no mechanics for automatic scaling of the solution as the data set increases. Second, the battery limitations of the BSN severely limit the maximum deployment time for the continuous monitoring. This problem is often solved by shifting some processing to the local sensor nodes to avoid a very heavy communication cost. However, little work has been done to optimize the sensing and processing cost of the action recognition. In this paper, we propose an action recognition approach based on the BSN repository. We show how the information of a large repository can be automatically used to customize the processing on sensor nodes based on a limited and automated training process. We also investigate the power cost of such a repository mining approach on the sensor nodes based on our implementation. To assess the power requirement, we define an energy model for data sensing and processing. We demonstrate the relationship between the activity recognition precision and the power consumption of the system during continuous action monitoring. We demonstrate the energy effectiveness of our approach with a classification accuracy constraint based on limited data repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors. Accurate energy expenditure estimation using smartphone sensors Remote patient monitoring: what impact can data analytics have on cost? PEES: physiology-based end-to-end security for mHealth AsthmaGuru: a framework to improve adherence to asthma medication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1