用硅纳米探针快速监测脑化学的皮升液滴生成

Yan Zhang, Ari Esters, O. Bi, Y. Vlasov
{"title":"用硅纳米探针快速监测脑化学的皮升液滴生成","authors":"Yan Zhang, Ari Esters, O. Bi, Y. Vlasov","doi":"10.1109/TRANSDUCERS.2019.8808797","DOIUrl":null,"url":null,"abstract":"To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"31 1","pages":"209-212"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe\",\"authors\":\"Yan Zhang, Ari Esters, O. Bi, Y. Vlasov\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"31 1\",\"pages\":\"209-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了监测神经化学物质,同时最大限度地减少脑损伤,开发了一种微透析系统,其流体通道尺寸为5 μm-半径,可容纳在15x50 μm2的硅神经探针中。利用液滴生成来阻止泰勒色散,以获得高时间分辨率。为了扩大在这样一个空间有限的探针中以超低nL/min流速产生单分散液滴的稳定区域,我们改变了t结角,这一参数通常在考虑较大通道时被忽略。在一系列的实验中,我们发现t结角的增加增加了分离挤压和喷射分割的临界毛细数。通过优化几何结构,我们展示了在硅纳米流体通道中产生单分散的pl体积液滴。有限元分析表明,这些影响是由于压差和粘性剪切力之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Picoliter Droplet Generation for Fast Monitoring the Brain Chemistry with Scaled Silicon Nanodyalisis Probe
To monitor neurochemicals while minimizing brain damage, a microdialysis system is developed with fluidic channels scaled to 5 μm-radius to fit into 15x50 μm2 silicon neural probe. Droplet generation is utilized to halt Taylor dispersion to achieve high temporal resolution. To extend the stability region for monodisperse droplet generation in such a space-limited probe at ultra-low nL/min flow rates, we varied the T-junction angle, parameter that is typically omitted from consideration for larger channels. In a series of experiments, we found that increase of the T-junction angle increases the critical capillary number separating squeezing and jetting segmentation regimes. With optimized geometry, we demonstrated generation of monodisperse pL-volume droplets in silicon nanofluidic channels. Finite element analysis indicated that these effects are due to interplay between differential pressure and viscous shear forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems Gan Current Transducers for Harsh Environments Harnessing Poisson Effect to Realize Tunable Tunneling Nanogap Electrodes on PDMS Substrates for Strain Sensing Self-Powered, Ultra-Reliable Hydrogen Sensor Exploiting Chemomechanical Nano-Transducer and Solar-Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1