生命起源于宇宙的低温区域吗?

S. Krasnokutski
{"title":"生命起源于宇宙的低温区域吗?","authors":"S. Krasnokutski","doi":"10.1063/10.0003519","DOIUrl":null,"url":null,"abstract":"The biological molecules delivered to Earth on the board of meteorites and comets were called one of the possible causes of the origin of life. Therefore, our understanding of the routes of formation of biomolecules in space should shed the light on the possibility of the existence of habitable extrasolar planets. The large abundance of organic molecules is found in the space regions with the lowest temperature. Different routes of the organics formation in these areas were suggested. In this article, we demonstrate that complex organic molecules same as important biological molecules can be formed due to the reaction of C atoms with the mantels of molecular ices covering refractory dust grains present in the interstellar medium (ISM). Having four valence electrons, C atoms act as glue joining simple non-organic molecules and converting them into organic matter. The formation of many molecules is barrierless and thus can happen at low temperature. The barrierless reaction C + NH3 + CO -> NH2CHCO attracts particular interest. The product of this reaction is an isomer of the central residue of a peptide chain and expected to be efficiently formed in the translucent molecular clouds. The polymerization of these molecules leads to the formation of proteins that according to some theories are life's first molecules. Considering a high abundance of atomic carbon in the ISM, we expect a high efficiency of the formation of a large variety of different organic molecules, and show why the amount of organic material formed by condensation of atomic carbon may be underestimated.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Did life originate from low-temperature areas of the Universe?\",\"authors\":\"S. Krasnokutski\",\"doi\":\"10.1063/10.0003519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biological molecules delivered to Earth on the board of meteorites and comets were called one of the possible causes of the origin of life. Therefore, our understanding of the routes of formation of biomolecules in space should shed the light on the possibility of the existence of habitable extrasolar planets. The large abundance of organic molecules is found in the space regions with the lowest temperature. Different routes of the organics formation in these areas were suggested. In this article, we demonstrate that complex organic molecules same as important biological molecules can be formed due to the reaction of C atoms with the mantels of molecular ices covering refractory dust grains present in the interstellar medium (ISM). Having four valence electrons, C atoms act as glue joining simple non-organic molecules and converting them into organic matter. The formation of many molecules is barrierless and thus can happen at low temperature. The barrierless reaction C + NH3 + CO -> NH2CHCO attracts particular interest. The product of this reaction is an isomer of the central residue of a peptide chain and expected to be efficiently formed in the translucent molecular clouds. The polymerization of these molecules leads to the formation of proteins that according to some theories are life's first molecules. Considering a high abundance of atomic carbon in the ISM, we expect a high efficiency of the formation of a large variety of different organic molecules, and show why the amount of organic material formed by condensation of atomic carbon may be underestimated.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0003519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0003519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

通过陨石和彗星传递到地球的生物分子被称为生命起源的可能原因之一。因此,我们对太空中生物分子形成途径的理解,应该有助于揭示太阳系外行星存在宜居的可能性。在温度最低的空间区域发现了大量的有机分子。提出了不同的有机质形成途径。在本文中,我们证明了C原子与星际介质(ISM)中存在的覆盖难熔尘埃颗粒的分子冰的地幔反应可以形成与重要生物分子相同的复杂有机分子。C原子有四个价电子,它像胶水一样把简单的非有机分子连接起来,把它们转化成有机物质。许多分子的形成是无阻碍的,因此可以在低温下发生。无障碍反应C + NH3 + CO -> NH2CHCO引起了特别的兴趣。该反应的产物是肽链中心残基的同分异构体,预计将在半透明的分子云中有效形成。这些分子的聚合导致了蛋白质的形成,根据一些理论,蛋白质是生命的第一个分子。考虑到ISM中原子碳的高丰度,我们期望形成各种不同有机分子的高效率,并说明为什么原子碳缩合形成的有机物质的数量可能被低估了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Did life originate from low-temperature areas of the Universe?
The biological molecules delivered to Earth on the board of meteorites and comets were called one of the possible causes of the origin of life. Therefore, our understanding of the routes of formation of biomolecules in space should shed the light on the possibility of the existence of habitable extrasolar planets. The large abundance of organic molecules is found in the space regions with the lowest temperature. Different routes of the organics formation in these areas were suggested. In this article, we demonstrate that complex organic molecules same as important biological molecules can be formed due to the reaction of C atoms with the mantels of molecular ices covering refractory dust grains present in the interstellar medium (ISM). Having four valence electrons, C atoms act as glue joining simple non-organic molecules and converting them into organic matter. The formation of many molecules is barrierless and thus can happen at low temperature. The barrierless reaction C + NH3 + CO -> NH2CHCO attracts particular interest. The product of this reaction is an isomer of the central residue of a peptide chain and expected to be efficiently formed in the translucent molecular clouds. The polymerization of these molecules leads to the formation of proteins that according to some theories are life's first molecules. Considering a high abundance of atomic carbon in the ISM, we expect a high efficiency of the formation of a large variety of different organic molecules, and show why the amount of organic material formed by condensation of atomic carbon may be underestimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting The Averaged Problem in The Case of Mean-Motion Resonances of The Restricted Three-Body Problem. Global Rigorous Treatment and Application To The Co-Orbital Motion. Automatic planetary defense Deflecting NEOs by missiles shot from L1 and L3 (Earth-Moon). Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction Origin and dynamical evolution of the asteroid belt Revised planet brightness temperatures using the Planck/LFI 2018 data release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1