E. Carfagna, G. Migliazza, F. Immovilli, C. M. Verrelli, E. Lorenzani
{"title":"基于pmsm模型的混合步进电机无传感器控制:性能和参数色散鲁棒性","authors":"E. Carfagna, G. Migliazza, F. Immovilli, C. M. Verrelli, E. Lorenzani","doi":"10.1109/IECON43393.2020.9254711","DOIUrl":null,"url":null,"abstract":"Extended Kalman Filters (EKFs), Phase Locked Loops (PLLs), and Stator Flux Observers (SFOs) are widely used for sensorless control of Permanent Magnet Synchronous Motors (PMSMs) drives. Their use (in their most advanced version) is here extended, on the basis of model analogies and suitably-guaranteed closed loop stability properties, to the sensorless speed regulation control of Hybrid Stepper Motors (HSMs), in which position and speed sensors are not employed to reduce costs and increase robustness with respect to high temperature and high-vibration environments. Both realistic simulations and experimental results demonstrate the feasibility of the proposed methods in terms of closed-loop performance and robustness to parameters mismatch.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"1063-1068"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PMSM-Model-Based Sensorless Control of Hybrid Stepper Motors: Performance and Robustness to Parameters Dispersion\",\"authors\":\"E. Carfagna, G. Migliazza, F. Immovilli, C. M. Verrelli, E. Lorenzani\",\"doi\":\"10.1109/IECON43393.2020.9254711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Kalman Filters (EKFs), Phase Locked Loops (PLLs), and Stator Flux Observers (SFOs) are widely used for sensorless control of Permanent Magnet Synchronous Motors (PMSMs) drives. Their use (in their most advanced version) is here extended, on the basis of model analogies and suitably-guaranteed closed loop stability properties, to the sensorless speed regulation control of Hybrid Stepper Motors (HSMs), in which position and speed sensors are not employed to reduce costs and increase robustness with respect to high temperature and high-vibration environments. Both realistic simulations and experimental results demonstrate the feasibility of the proposed methods in terms of closed-loop performance and robustness to parameters mismatch.\",\"PeriodicalId\":13045,\"journal\":{\"name\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"1063-1068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON43393.2020.9254711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9254711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PMSM-Model-Based Sensorless Control of Hybrid Stepper Motors: Performance and Robustness to Parameters Dispersion
Extended Kalman Filters (EKFs), Phase Locked Loops (PLLs), and Stator Flux Observers (SFOs) are widely used for sensorless control of Permanent Magnet Synchronous Motors (PMSMs) drives. Their use (in their most advanced version) is here extended, on the basis of model analogies and suitably-guaranteed closed loop stability properties, to the sensorless speed regulation control of Hybrid Stepper Motors (HSMs), in which position and speed sensors are not employed to reduce costs and increase robustness with respect to high temperature and high-vibration environments. Both realistic simulations and experimental results demonstrate the feasibility of the proposed methods in terms of closed-loop performance and robustness to parameters mismatch.