{"title":"高压压缩下硫化物固体电解质单粒子行为的原位x射线计算机断层扫描测量","authors":"M. Kodama, A. Ohashi, S. Hirai","doi":"10.1016/j.powera.2020.100019","DOIUrl":null,"url":null,"abstract":"<div><p>High-pressure in situ X-ray computational tomography measurements of sulfide solid electrolyte were conducted to elucidate the behavior of a single particle. Chlorine in Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte was replaced by iodine to obtain high-contrast X-ray computational tomography measurements, and the behavior of a single particle under high pressure was successfully visualized. The experimental results were statistically analyzed to extract the generalized behavior of a solid electrolyte particle. The results show that pressurization increased the contact area and sphericity of a solid electrolyte particle and suppressed the voids between and within the solid electrolyte particles, thereby enhancing ionic conductivity.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"4 ","pages":"Article 100019"},"PeriodicalIF":5.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100019","citationCount":"8","resultStr":"{\"title\":\"In situ X-ray computational tomography measurement of single particle behavior of sulfide solid electrolyte under high-pressure compression\",\"authors\":\"M. Kodama, A. Ohashi, S. Hirai\",\"doi\":\"10.1016/j.powera.2020.100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-pressure in situ X-ray computational tomography measurements of sulfide solid electrolyte were conducted to elucidate the behavior of a single particle. Chlorine in Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte was replaced by iodine to obtain high-contrast X-ray computational tomography measurements, and the behavior of a single particle under high pressure was successfully visualized. The experimental results were statistically analyzed to extract the generalized behavior of a solid electrolyte particle. The results show that pressurization increased the contact area and sphericity of a solid electrolyte particle and suppressed the voids between and within the solid electrolyte particles, thereby enhancing ionic conductivity.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"4 \",\"pages\":\"Article 100019\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.powera.2020.100019\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248520300196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In situ X-ray computational tomography measurement of single particle behavior of sulfide solid electrolyte under high-pressure compression
High-pressure in situ X-ray computational tomography measurements of sulfide solid electrolyte were conducted to elucidate the behavior of a single particle. Chlorine in Li6PS5Cl solid electrolyte was replaced by iodine to obtain high-contrast X-ray computational tomography measurements, and the behavior of a single particle under high pressure was successfully visualized. The experimental results were statistically analyzed to extract the generalized behavior of a solid electrolyte particle. The results show that pressurization increased the contact area and sphericity of a solid electrolyte particle and suppressed the voids between and within the solid electrolyte particles, thereby enhancing ionic conductivity.