利用合成充放电曲线伏安法研究锂离子电池电解质的氧化稳定性

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2021-10-01 DOI:10.1016/j.powera.2021.100071
Alma Mathew , Matthew J. Lacey , Daniel Brandell
{"title":"利用合成充放电曲线伏安法研究锂离子电池电解质的氧化稳定性","authors":"Alma Mathew ,&nbsp;Matthew J. Lacey ,&nbsp;Daniel Brandell","doi":"10.1016/j.powera.2021.100071","DOIUrl":null,"url":null,"abstract":"<div><p>Electrolytes are an integral part of any electrochemical energy storage systems, including batteries. Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability – and for high voltage electrodes, in particular anodic stability – is a key parameter to consider. Despite being simple and straightforward to employ, the conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of the oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate the oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone and carbonate-sulfone mixtures, all with lithium hexafluorophosphate (LiPF<sub>6</sub>) salt, tested for a potential profile equivalent to LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"11 ","pages":"Article 100071"},"PeriodicalIF":5.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000263/pdfft?md5=645c56c0f30bcf8eddad0fe50e6a2292&pid=1-s2.0-S2666248521000263-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry\",\"authors\":\"Alma Mathew ,&nbsp;Matthew J. Lacey ,&nbsp;Daniel Brandell\",\"doi\":\"10.1016/j.powera.2021.100071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrolytes are an integral part of any electrochemical energy storage systems, including batteries. Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability – and for high voltage electrodes, in particular anodic stability – is a key parameter to consider. Despite being simple and straightforward to employ, the conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of the oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate the oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone and carbonate-sulfone mixtures, all with lithium hexafluorophosphate (LiPF<sub>6</sub>) salt, tested for a potential profile equivalent to LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"11 \",\"pages\":\"Article 100071\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000263/pdfft?md5=645c56c0f30bcf8eddad0fe50e6a2292&pid=1-s2.0-S2666248521000263-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电解质是包括电池在内的任何电化学储能系统的组成部分。在决定锂离子电池电解液适用性的众多特性中,电化学稳定性——以及高压电极,特别是阳极稳定性——是需要考虑的一个关键参数。传统的线性扫描伏安法(LSV)虽然简单易用,但往往会导致对氧化稳定性的过高估计。在这项研究中,一种替代方法被称为合成充放电曲线伏安法(SCPV)被探索来研究氧化电解质的稳定性。我们发现这是一种方便的方法,以一种更实际的代表性的方式量化电解质的阳极稳定性,其中钝化动力学和电极电位在电极-电解质界面的变化更适当地再现。该技术的可行性与基于乙醚、碳酸盐、砜和碳酸盐岩-砜混合物的液体电解质进行了探讨,所有液体电解质都含有六氟磷酸锂(LiPF6)盐,测试了相当于LiNi0.5Mn1.5O4电极的电位分布。通过与相应半电池的库仑效率的相关性验证了该技术的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry

Electrolytes are an integral part of any electrochemical energy storage systems, including batteries. Among the many properties which determine the applicability of a Li-ion battery electrolyte, electrochemical stability – and for high voltage electrodes, in particular anodic stability – is a key parameter to consider. Despite being simple and straightforward to employ, the conventional linear sweep voltammetry (LSV) technique often leads to an over-estimation of the oxidative stability. In this study, an alternative approach termed Synthetic Charge-discharge Profile Voltammetry (SCPV) is explored to investigate the oxidative electrolyte stability. We have found this to be a convenient method of quantifying the anodic stability of the electrolyte in a more practically representative manner, in which passivation kinetics and electrode potential changes at the electrode-electrolyte interface are more appropriately reproduced. The viability of this technique is explored with liquid electrolytes based on ether, carbonate, sulfone and carbonate-sulfone mixtures, all with lithium hexafluorophosphate (LiPF6) salt, tested for a potential profile equivalent to LiNi0.5Mn1.5O4 electrodes. The credibility of this technique is validated by correlations to the coulombic efficiencies of corresponding half-cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1