P. B. P. Góis, G. Olyveira, L. Costa, C. Chianca, Igor Ives Santos Fraga, P. Basmaji, C. Córdoba, L. Xavier-Filho
{"title":"微生物/酵母菌共生培养对纤维素合成的影响","authors":"P. B. P. Góis, G. Olyveira, L. Costa, C. Chianca, Igor Ives Santos Fraga, P. Basmaji, C. Córdoba, L. Xavier-Filho","doi":"10.15866/IREBIC.V3I3.1558","DOIUrl":null,"url":null,"abstract":"Bacterial cellulose (BC), which is produced by some strains of the bacterial genera Acetobacter, represents a potential alternative to plant-derived cellulose. Due to its high water-holding capacity, high crystallinity, high tensile strength and fine web-like network structure, which means that it can be formed into any size or shape, BC is being used as a promising nanofiber biomaterial. The bacterial cellulose fermentation process is achieved by using the sugar as carbohydrate source. Different carbon sources can be used for the cellulose synthesis, namely glucose, fructose and cane sugar. Results of this process would be nanobiocellulose biomass.In order to improve cellulose production, determine the purity and some structural features of the cellulose from this strain; it was isolated and identified the microorganisms from kombucha and their ability to cellulose biosynthesis. It was found that the microorganisms Gluconacetobacter intermedius is the best for cellulose production with higher cellulose levels (14.63g/L) in static culture conditions. These results indicating the G. intermedius strain from Kombucha has industrial and commercial potential for cellulose production","PeriodicalId":14377,"journal":{"name":"International Review of Biophysical Chemistry","volume":"34 1","pages":"48-54"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of Symbioses Culture between Microorganisms/Yeast Strains on Cellulose Synthesis\",\"authors\":\"P. B. P. Góis, G. Olyveira, L. Costa, C. Chianca, Igor Ives Santos Fraga, P. Basmaji, C. Córdoba, L. Xavier-Filho\",\"doi\":\"10.15866/IREBIC.V3I3.1558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial cellulose (BC), which is produced by some strains of the bacterial genera Acetobacter, represents a potential alternative to plant-derived cellulose. Due to its high water-holding capacity, high crystallinity, high tensile strength and fine web-like network structure, which means that it can be formed into any size or shape, BC is being used as a promising nanofiber biomaterial. The bacterial cellulose fermentation process is achieved by using the sugar as carbohydrate source. Different carbon sources can be used for the cellulose synthesis, namely glucose, fructose and cane sugar. Results of this process would be nanobiocellulose biomass.In order to improve cellulose production, determine the purity and some structural features of the cellulose from this strain; it was isolated and identified the microorganisms from kombucha and their ability to cellulose biosynthesis. It was found that the microorganisms Gluconacetobacter intermedius is the best for cellulose production with higher cellulose levels (14.63g/L) in static culture conditions. These results indicating the G. intermedius strain from Kombucha has industrial and commercial potential for cellulose production\",\"PeriodicalId\":14377,\"journal\":{\"name\":\"International Review of Biophysical Chemistry\",\"volume\":\"34 1\",\"pages\":\"48-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Biophysical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREBIC.V3I3.1558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Biophysical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREBIC.V3I3.1558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Symbioses Culture between Microorganisms/Yeast Strains on Cellulose Synthesis
Bacterial cellulose (BC), which is produced by some strains of the bacterial genera Acetobacter, represents a potential alternative to plant-derived cellulose. Due to its high water-holding capacity, high crystallinity, high tensile strength and fine web-like network structure, which means that it can be formed into any size or shape, BC is being used as a promising nanofiber biomaterial. The bacterial cellulose fermentation process is achieved by using the sugar as carbohydrate source. Different carbon sources can be used for the cellulose synthesis, namely glucose, fructose and cane sugar. Results of this process would be nanobiocellulose biomass.In order to improve cellulose production, determine the purity and some structural features of the cellulose from this strain; it was isolated and identified the microorganisms from kombucha and their ability to cellulose biosynthesis. It was found that the microorganisms Gluconacetobacter intermedius is the best for cellulose production with higher cellulose levels (14.63g/L) in static culture conditions. These results indicating the G. intermedius strain from Kombucha has industrial and commercial potential for cellulose production