{"title":"等离子体辅助超低k介电体侧壁损伤原位修复的实验研究","authors":"N. Kohler, T. Fischer, S. Zimmermann, S. Schulz","doi":"10.1109/IITC-MAM.2015.7325598","DOIUrl":null,"url":null,"abstract":"With the insertion of evaporated repair liquids into remote plasmas, a novel method to restore plasma damaged ultra low-k (ULK) materials will be introduced. The main advantage of this approach is the enhanced repair efficiency due to the formation of small plasma activated multiple repairing fragments. In this study Octamethylcyclotetrasiloxane (OMCTS) and Bis(dimethylamino)dimethylsilane (DMADMS) were chosen for blanket samples with a k-value of 2.4. Furthermore OMCTS with the addition of oxygen, methane or nitrogen was investigated on patterned ULK trench structures with 62 nm feature size.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"76 1","pages":"353-356"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigations on a plasma assisted in situ restoration process for sidewall damaged ultra low-k dielectrics\",\"authors\":\"N. Kohler, T. Fischer, S. Zimmermann, S. Schulz\",\"doi\":\"10.1109/IITC-MAM.2015.7325598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the insertion of evaporated repair liquids into remote plasmas, a novel method to restore plasma damaged ultra low-k (ULK) materials will be introduced. The main advantage of this approach is the enhanced repair efficiency due to the formation of small plasma activated multiple repairing fragments. In this study Octamethylcyclotetrasiloxane (OMCTS) and Bis(dimethylamino)dimethylsilane (DMADMS) were chosen for blanket samples with a k-value of 2.4. Furthermore OMCTS with the addition of oxygen, methane or nitrogen was investigated on patterned ULK trench structures with 62 nm feature size.\",\"PeriodicalId\":6514,\"journal\":{\"name\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"volume\":\"76 1\",\"pages\":\"353-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC-MAM.2015.7325598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigations on a plasma assisted in situ restoration process for sidewall damaged ultra low-k dielectrics
With the insertion of evaporated repair liquids into remote plasmas, a novel method to restore plasma damaged ultra low-k (ULK) materials will be introduced. The main advantage of this approach is the enhanced repair efficiency due to the formation of small plasma activated multiple repairing fragments. In this study Octamethylcyclotetrasiloxane (OMCTS) and Bis(dimethylamino)dimethylsilane (DMADMS) were chosen for blanket samples with a k-value of 2.4. Furthermore OMCTS with the addition of oxygen, methane or nitrogen was investigated on patterned ULK trench structures with 62 nm feature size.