{"title":"使用可解释的人工智能控制建筑物冷却系统的规则缩减","authors":"S. Cho, C. Park","doi":"10.1080/19401493.2022.2103586","DOIUrl":null,"url":null,"abstract":"Although it is widely acknowledged that reinforcement learning (RL) can be beneficial for building control, many RL-based control actions remain unexplainable in the daily practice of facility managers. This paper reports a rule reduction framework using explainable RL to enhance the practicality of the control strategy. First, deep Q-learning was applied to explore the optimal control strategies of a parallel cooling system (ice-based thermal system + geothermal heat pump system) of an existing office building. A set of modularized and interconnected data-driven models was developed using ANNs for pretraining an artificial agent. After exploring the control strategies, the decision-making rules of the agent were reduced using a decision tree. The performance of the reduced-order rule-based control proved comparable to the complex and uninterpretable control strategy of deep Q-learning. The difference in energy savings between the two is marginal at 1.2%.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rule reduction for control of a building cooling system using explainable AI\",\"authors\":\"S. Cho, C. Park\",\"doi\":\"10.1080/19401493.2022.2103586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although it is widely acknowledged that reinforcement learning (RL) can be beneficial for building control, many RL-based control actions remain unexplainable in the daily practice of facility managers. This paper reports a rule reduction framework using explainable RL to enhance the practicality of the control strategy. First, deep Q-learning was applied to explore the optimal control strategies of a parallel cooling system (ice-based thermal system + geothermal heat pump system) of an existing office building. A set of modularized and interconnected data-driven models was developed using ANNs for pretraining an artificial agent. After exploring the control strategies, the decision-making rules of the agent were reduced using a decision tree. The performance of the reduced-order rule-based control proved comparable to the complex and uninterpretable control strategy of deep Q-learning. The difference in energy savings between the two is marginal at 1.2%.\",\"PeriodicalId\":49168,\"journal\":{\"name\":\"Journal of Building Performance Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Performance Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19401493.2022.2103586\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2103586","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Rule reduction for control of a building cooling system using explainable AI
Although it is widely acknowledged that reinforcement learning (RL) can be beneficial for building control, many RL-based control actions remain unexplainable in the daily practice of facility managers. This paper reports a rule reduction framework using explainable RL to enhance the practicality of the control strategy. First, deep Q-learning was applied to explore the optimal control strategies of a parallel cooling system (ice-based thermal system + geothermal heat pump system) of an existing office building. A set of modularized and interconnected data-driven models was developed using ANNs for pretraining an artificial agent. After exploring the control strategies, the decision-making rules of the agent were reduced using a decision tree. The performance of the reduced-order rule-based control proved comparable to the complex and uninterpretable control strategy of deep Q-learning. The difference in energy savings between the two is marginal at 1.2%.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.