{"title":"孔隙空间可压缩性评价方法的比较","authors":"V. Zhukov, Y. Kuzmin","doi":"10.31897/pmi.2022.97","DOIUrl":null,"url":null,"abstract":"Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure.","PeriodicalId":16398,"journal":{"name":"Journal of Mining Institute","volume":"5 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of the approaches to assessing the compressibility of the pore space\",\"authors\":\"V. Zhukov, Y. Kuzmin\",\"doi\":\"10.31897/pmi.2022.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure.\",\"PeriodicalId\":16398,\"journal\":{\"name\":\"Journal of Mining Institute\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31897/pmi.2022.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31897/pmi.2022.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Comparison of the approaches to assessing the compressibility of the pore space
Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure.