水性丙烯酸聚合物/SiO2纳米复合涂料的耐碱性研究

IF 2.3 3区 化学 Q3 CHEMISTRY, ANALYTICAL Journal of Analytical Methods in Chemistry Pub Date : 2022-04-22 DOI:10.1155/2022/8266576
H. Thuy, H. Ha, Nguyen Thien Vuong, Tuan Anh Nguyen
{"title":"水性丙烯酸聚合物/SiO2纳米复合涂料的耐碱性研究","authors":"H. Thuy, H. Ha, Nguyen Thien Vuong, Tuan Anh Nguyen","doi":"10.1155/2022/8266576","DOIUrl":null,"url":null,"abstract":"This study presents a study on the influence of nano-SiO2 on the alkaline resistance of waterborne acrylic coating using some analysis methods such as FT-IR and UV-Vis spectroscopy, combined with FE-SEM analysis and monitoring weight and adhesion changes during exposure to the saturated Ca(OH)2 alkaline environment. The obtained results indicated that the alkaline resistance of acrylic coating enhanced appreciably when adding 2.5 wt% of nano-SiO2. Under the impact of the saturated Ca(OH)2 solution for 20 days of immersion, nanocomposite coating containing 2.5 wt.% of nano-SiO2 was only decreased by 3.6% of the weight and 15.4% of the adhesion, while the neat acrylic coating (without nano-SiO2) seriously reduced 25.4% of the weight and 39.1% of the adhesion.","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"89 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Alkaline Resistance of Waterborne Acrylic Polymer/SiO2 Nanocomposite Coatings\",\"authors\":\"H. Thuy, H. Ha, Nguyen Thien Vuong, Tuan Anh Nguyen\",\"doi\":\"10.1155/2022/8266576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a study on the influence of nano-SiO2 on the alkaline resistance of waterborne acrylic coating using some analysis methods such as FT-IR and UV-Vis spectroscopy, combined with FE-SEM analysis and monitoring weight and adhesion changes during exposure to the saturated Ca(OH)2 alkaline environment. The obtained results indicated that the alkaline resistance of acrylic coating enhanced appreciably when adding 2.5 wt% of nano-SiO2. Under the impact of the saturated Ca(OH)2 solution for 20 days of immersion, nanocomposite coating containing 2.5 wt.% of nano-SiO2 was only decreased by 3.6% of the weight and 15.4% of the adhesion, while the neat acrylic coating (without nano-SiO2) seriously reduced 25.4% of the weight and 39.1% of the adhesion.\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8266576\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/8266576","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用FT-IR、UV-Vis光谱等分析方法,结合FE-SEM分析,并监测饱和Ca(OH)2碱性环境下,纳米sio2对水性丙烯酸涂料耐碱性的影响。结果表明,当纳米sio2含量为2.5 wt%时,丙烯酸涂料的耐碱性明显增强。在饱和Ca(OH)2溶液浸泡20天的影响下,纳米复合涂层含2.5 wt。纳米sio2的掺入仅使涂层重量降低3.6%,附着力降低15.4%,而未掺入纳米sio2的纯丙烯酸涂层则使涂层重量降低25.4%,附着力降低39.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Alkaline Resistance of Waterborne Acrylic Polymer/SiO2 Nanocomposite Coatings
This study presents a study on the influence of nano-SiO2 on the alkaline resistance of waterborne acrylic coating using some analysis methods such as FT-IR and UV-Vis spectroscopy, combined with FE-SEM analysis and monitoring weight and adhesion changes during exposure to the saturated Ca(OH)2 alkaline environment. The obtained results indicated that the alkaline resistance of acrylic coating enhanced appreciably when adding 2.5 wt% of nano-SiO2. Under the impact of the saturated Ca(OH)2 solution for 20 days of immersion, nanocomposite coating containing 2.5 wt.% of nano-SiO2 was only decreased by 3.6% of the weight and 15.4% of the adhesion, while the neat acrylic coating (without nano-SiO2) seriously reduced 25.4% of the weight and 39.1% of the adhesion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Analytical Methods in Chemistry
Journal of Analytical Methods in Chemistry CHEMISTRY, ANALYTICAL-ENGINEERING, CIVIL
CiteScore
4.80
自引率
3.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical. Subject areas include (but are by no means limited to): Separation Spectroscopy Mass spectrometry Chromatography Analytical Sample Preparation Electrochemical analysis Hyphenated techniques Data processing As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Bifenthrin's Environmental Fate: An Insight Into Its Soil Sorption and Degradation Studies. Identifying Baicalin Concentration in Scutellaria Spray Drying Powder With Disturbed Terahertz Spectra Based on Gaussian Mixture Model. Quantitative Determination of Steroidal Saponins of Semen Allii Fistulosi Using HPLC-ELSD and HPLC-MS. Handgrip-Ring Structure Sensing Probe Assisted Multiple Signal Amplification Strategy for Sensitive and Label-Free Single-Stranded Nucleic Acid Analysis. Characterization of Volatile Organic Compounds and Aroma Sensory Properties in Yunnan Cigar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1