多聚类组合的改进非负矩阵分解算法

Q1 Social Sciences HumanMachine Communication Journal Pub Date : 2010-04-24 DOI:10.1109/MVHI.2010.72
Wei Wang
{"title":"多聚类组合的改进非负矩阵分解算法","authors":"Wei Wang","doi":"10.1109/MVHI.2010.72","DOIUrl":null,"url":null,"abstract":"Cluster ensemble has recently become a hotspot in machine learning communities. The key problem in cluster ensemble is how to combine multiple clusterings to yield a final superior result. In this paper, an Improved Non-negative Matrix Factorization (INMF) algorithm is proposed. Firstly, K-Means algorithm is performed to partition the hypergraph’s adjacent matrix and get the indicator matrix, which is then provided to NMF as initial factor matrix. Secondly, NMF is performed to get the basis matrix and coefficient matrix. Finally, clustering result is obtained via the elements in coefficient matrix. Experiments on several real-world datasets show that: (a) INMF outperforms the NMF-based cluster ensemble algorithm; (b) INMF obtains better clustering results than other common cluster ensemble algorithms.","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Improved Non-negative Matrix Factorization Algorithm for Combining Multiple Clusterings\",\"authors\":\"Wei Wang\",\"doi\":\"10.1109/MVHI.2010.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster ensemble has recently become a hotspot in machine learning communities. The key problem in cluster ensemble is how to combine multiple clusterings to yield a final superior result. In this paper, an Improved Non-negative Matrix Factorization (INMF) algorithm is proposed. Firstly, K-Means algorithm is performed to partition the hypergraph’s adjacent matrix and get the indicator matrix, which is then provided to NMF as initial factor matrix. Secondly, NMF is performed to get the basis matrix and coefficient matrix. Finally, clustering result is obtained via the elements in coefficient matrix. Experiments on several real-world datasets show that: (a) INMF outperforms the NMF-based cluster ensemble algorithm; (b) INMF obtains better clustering results than other common cluster ensemble algorithms.\",\"PeriodicalId\":34860,\"journal\":{\"name\":\"HumanMachine Communication Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HumanMachine Communication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVHI.2010.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVHI.2010.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 5

摘要

最近,集群集成已经成为机器学习社区的一个热点。聚类集成的关键问题是如何将多个聚类组合在一起,从而得到一个更好的结果。提出了一种改进的非负矩阵分解(INMF)算法。首先,通过K-Means算法对超图的相邻矩阵进行划分,得到指标矩阵,作为初始因子矩阵提供给NMF;其次,通过NMF得到基矩阵和系数矩阵;最后,通过系数矩阵中的元素得到聚类结果。在多个真实数据集上的实验表明:(a) INMF优于基于nmf的聚类集成算法;(b)与其他常用聚类集成算法相比,INMF获得了更好的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Non-negative Matrix Factorization Algorithm for Combining Multiple Clusterings
Cluster ensemble has recently become a hotspot in machine learning communities. The key problem in cluster ensemble is how to combine multiple clusterings to yield a final superior result. In this paper, an Improved Non-negative Matrix Factorization (INMF) algorithm is proposed. Firstly, K-Means algorithm is performed to partition the hypergraph’s adjacent matrix and get the indicator matrix, which is then provided to NMF as initial factor matrix. Secondly, NMF is performed to get the basis matrix and coefficient matrix. Finally, clustering result is obtained via the elements in coefficient matrix. Experiments on several real-world datasets show that: (a) INMF outperforms the NMF-based cluster ensemble algorithm; (b) INMF obtains better clustering results than other common cluster ensemble algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
Defining Dialogues: Tracing the Evolution of Human-Machine Communication Who is (communicatively more) responsible behind the wheel? Applying the theory of communicative responsibility to TAM in the context of using navigation technology Archipelagic Human-Machine Communication: Building Bridges amidst Cultivated Ambiguity Triggered by Socialbots: Communicative Anthropomorphization of Bots in Online Conversations Boundary Regulation Processes and Privacy Concerns With (Non-)Use of Voice-Based Assistants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1