利用先进的基于x射线的表征方法阐明锂离子电池无钴高镍层状氧化物阴极的降解机制

Hyejeong Hyun, Jongwoo Lim
{"title":"利用先进的基于x射线的表征方法阐明锂离子电池无钴高镍层状氧化物阴极的降解机制","authors":"Hyejeong Hyun, Jongwoo Lim","doi":"10.31613/ceramist.2023.26.1.10","DOIUrl":null,"url":null,"abstract":"High-Ni layered oxide cathodes without Co are being investigated as potential cathode materials for Li-ion batteries with high energy density. By decreasing the Co content, these cathodes not only boost energy density but also alleviate concerns about the supply instability and fluctuating cost of Co raw materials. However, the elevated Ni content in the layered oxides causes distinct chemo-mechanical degradation mechanisms that inhibit their commercial application. In order to gain insight into the degradation process at various scales, from the atomic to the particle and the electrode levels, and to devise ways to prevent degradation, multi-scale characterization methods are essential. In this review, we critically evaluate the role of Co substitution in high-Ni layered oxides and the impact of Co content on the chemo-mechanical degradation process. Furthermore, the use of advanced X-ray-based characterization methods, which have helped shed light on the degradation mechanisms of high-Ni cathodes, is also discussed.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating degradation mechanisms of Co-free high-Ni layered oxide cathodes for Li-ion batteries via advanced X-ray-based characterization methods\",\"authors\":\"Hyejeong Hyun, Jongwoo Lim\",\"doi\":\"10.31613/ceramist.2023.26.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-Ni layered oxide cathodes without Co are being investigated as potential cathode materials for Li-ion batteries with high energy density. By decreasing the Co content, these cathodes not only boost energy density but also alleviate concerns about the supply instability and fluctuating cost of Co raw materials. However, the elevated Ni content in the layered oxides causes distinct chemo-mechanical degradation mechanisms that inhibit their commercial application. In order to gain insight into the degradation process at various scales, from the atomic to the particle and the electrode levels, and to devise ways to prevent degradation, multi-scale characterization methods are essential. In this review, we critically evaluate the role of Co substitution in high-Ni layered oxides and the impact of Co content on the chemo-mechanical degradation process. Furthermore, the use of advanced X-ray-based characterization methods, which have helped shed light on the degradation mechanisms of high-Ni cathodes, is also discussed.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/ceramist.2023.26.1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不含钴的高镍层状氧化物阴极正在被研究作为高能量密度锂离子电池的潜在正极材料。通过降低Co含量,这些阴极不仅提高了能量密度,而且减轻了对Co原料供应不稳定和成本波动的担忧。然而,层状氧化物中Ni含量的升高会导致不同的化学-机械降解机制,从而抑制其商业应用。为了深入了解从原子到颗粒和电极水平的各种尺度的降解过程,并设计防止降解的方法,多尺度表征方法是必不可少的。在这篇综述中,我们批判性地评估了Co取代在高镍层状氧化物中的作用以及Co含量对化学-机械降解过程的影响。此外,还讨论了先进的基于x射线的表征方法的使用,这些方法有助于阐明高镍阴极的降解机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating degradation mechanisms of Co-free high-Ni layered oxide cathodes for Li-ion batteries via advanced X-ray-based characterization methods
High-Ni layered oxide cathodes without Co are being investigated as potential cathode materials for Li-ion batteries with high energy density. By decreasing the Co content, these cathodes not only boost energy density but also alleviate concerns about the supply instability and fluctuating cost of Co raw materials. However, the elevated Ni content in the layered oxides causes distinct chemo-mechanical degradation mechanisms that inhibit their commercial application. In order to gain insight into the degradation process at various scales, from the atomic to the particle and the electrode levels, and to devise ways to prevent degradation, multi-scale characterization methods are essential. In this review, we critically evaluate the role of Co substitution in high-Ni layered oxides and the impact of Co content on the chemo-mechanical degradation process. Furthermore, the use of advanced X-ray-based characterization methods, which have helped shed light on the degradation mechanisms of high-Ni cathodes, is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perspectives on the development of advanced lithium metal anode Short Review of Flash Sintering: Mechanisms, Microstructures, and Mechanical Properties Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs Resent Progress of LiNi1-x-yCoxMnyO2 for Lithium-ion batteries Recent progress in all-solid-state Li-ion battery anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1