Lars Kotthoff, C. Thornton, H. Hoos, F. Hutter, Kevin Leyton-Brown
{"title":"Auto-WEKA 2.0:在WEKA中实现自动模型选择和超参数优化","authors":"Lars Kotthoff, C. Thornton, H. Hoos, F. Hutter, Kevin Leyton-Brown","doi":"10.1007/978-3-030-05318-5_4","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"60 1","pages":"81-95"},"PeriodicalIF":4.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"644","resultStr":"{\"title\":\"Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA\",\"authors\":\"Lars Kotthoff, C. Thornton, H. Hoos, F. Hutter, Kevin Leyton-Brown\",\"doi\":\"10.1007/978-3-030-05318-5_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":\"60 1\",\"pages\":\"81-95\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"644\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-05318-5_4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/978-3-030-05318-5_4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.