利用非负矩阵分解处理时序调制频谱以增强语音

Syu-Siang Wang, Jeremy Chiaming Yang, Yu Tsao, J. Hung
{"title":"利用非负矩阵分解处理时序调制频谱以增强语音","authors":"Syu-Siang Wang, Jeremy Chiaming Yang, Yu Tsao, J. Hung","doi":"10.1109/ICCE-TW.2016.7521042","DOIUrl":null,"url":null,"abstract":"This paper proposes to employ the technique of nonnegative matrix factorization (NMF) to enhance the temporal modulation components of speech signals for reducing the noisy effect. As for any arbitrary acoustic frequency, the NMF-wise bases for the temporal modulations of both the clean speech and noise are first extracted and then applied to the decomposition of the temporal modulation of the noise-corrupted speech signal. In this way the noise-free speech component can be highlighted and the updated speech signal possesses higher quality than the original counterpart. Moreover, the temporal modulations of the neighboring acoustic frequencies can be processed together to boost the computation efficiency without deteriorating the enhancement. The evaluation experiments conducted on a subset of the Aurora-2 connected digit database reveal that the proposed method significantly improves the Perceptual Evaluation of Speech Quality (PESQ) scores of the signals.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging nonnegative matrix factorization in processing the temporal modulation spectrum for speech enhancement\",\"authors\":\"Syu-Siang Wang, Jeremy Chiaming Yang, Yu Tsao, J. Hung\",\"doi\":\"10.1109/ICCE-TW.2016.7521042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to employ the technique of nonnegative matrix factorization (NMF) to enhance the temporal modulation components of speech signals for reducing the noisy effect. As for any arbitrary acoustic frequency, the NMF-wise bases for the temporal modulations of both the clean speech and noise are first extracted and then applied to the decomposition of the temporal modulation of the noise-corrupted speech signal. In this way the noise-free speech component can be highlighted and the updated speech signal possesses higher quality than the original counterpart. Moreover, the temporal modulations of the neighboring acoustic frequencies can be processed together to boost the computation efficiency without deteriorating the enhancement. The evaluation experiments conducted on a subset of the Aurora-2 connected digit database reveal that the proposed method significantly improves the Perceptual Evaluation of Speech Quality (PESQ) scores of the signals.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"1 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7521042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7521042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出利用非负矩阵分解(NMF)技术增强语音信号的时间调制分量,以降低噪声影响。对于任意声学频率,首先提取干净语音和噪声的时间调制的nmf基,然后将其应用于噪声破坏语音信号的时间调制的分解。通过这种方式,可以突出显示无噪声的语音分量,并且更新后的语音信号具有比原始语音信号更高的质量。此外,相邻声频的时间调制可以一起处理,在不影响增强的情况下提高计算效率。在Aurora-2连接数字数据库的一个子集上进行的评估实验表明,该方法显著提高了信号的语音质量感知评估(PESQ)分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging nonnegative matrix factorization in processing the temporal modulation spectrum for speech enhancement
This paper proposes to employ the technique of nonnegative matrix factorization (NMF) to enhance the temporal modulation components of speech signals for reducing the noisy effect. As for any arbitrary acoustic frequency, the NMF-wise bases for the temporal modulations of both the clean speech and noise are first extracted and then applied to the decomposition of the temporal modulation of the noise-corrupted speech signal. In this way the noise-free speech component can be highlighted and the updated speech signal possesses higher quality than the original counterpart. Moreover, the temporal modulations of the neighboring acoustic frequencies can be processed together to boost the computation efficiency without deteriorating the enhancement. The evaluation experiments conducted on a subset of the Aurora-2 connected digit database reveal that the proposed method significantly improves the Perceptual Evaluation of Speech Quality (PESQ) scores of the signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microorganism Image Counting Based on Multi-threshold Optimization An immersive VR experience mode design Methods and apparatuses for drying electronic devices Topology constructing and restructuring mechanisms for Bluetooth radio networks Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1