L. Dehbozorgi, Reza Akbari-Hasanjani, R. Sabbaghi‐Nadooshan
{"title":"基于噪声和地震异常检测的混沌地震信号建模","authors":"L. Dehbozorgi, Reza Akbari-Hasanjani, R. Sabbaghi‐Nadooshan","doi":"10.2298/fuee2204603d","DOIUrl":null,"url":null,"abstract":"Since ancient times, people have tried to predict earthquakes using simple perceptions such as animal behavior. The prediction of the time and strength of an earthquake is of primary concern. In this study chaotic signal modeling is used based on noise and detecting anomalies before an earthquake using artificial neural networks (ANNs). Artificial neural networks are efficient tools for solving complex problems such as prediction and identification. In this study, the effective features of chaotic signal model is obtained considering noise and detection of anomalies five minutes before an earthquake occurrence. Neuro-fuzzy classifier and MLP neural network approaches showed acceptable accuracy of 84.6491% and 82.8947%, respectively. Results demonstrate that the proposed method is an effective seismic signal model based on noise and anomaly detection before an earthquake.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic seismic signal modeling based on noise and earthquake anomaly detection\",\"authors\":\"L. Dehbozorgi, Reza Akbari-Hasanjani, R. Sabbaghi‐Nadooshan\",\"doi\":\"10.2298/fuee2204603d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since ancient times, people have tried to predict earthquakes using simple perceptions such as animal behavior. The prediction of the time and strength of an earthquake is of primary concern. In this study chaotic signal modeling is used based on noise and detecting anomalies before an earthquake using artificial neural networks (ANNs). Artificial neural networks are efficient tools for solving complex problems such as prediction and identification. In this study, the effective features of chaotic signal model is obtained considering noise and detection of anomalies five minutes before an earthquake occurrence. Neuro-fuzzy classifier and MLP neural network approaches showed acceptable accuracy of 84.6491% and 82.8947%, respectively. Results demonstrate that the proposed method is an effective seismic signal model based on noise and anomaly detection before an earthquake.\",\"PeriodicalId\":44296,\"journal\":{\"name\":\"Facta Universitatis-Series Electronics and Energetics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Electronics and Energetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fuee2204603d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2204603d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Chaotic seismic signal modeling based on noise and earthquake anomaly detection
Since ancient times, people have tried to predict earthquakes using simple perceptions such as animal behavior. The prediction of the time and strength of an earthquake is of primary concern. In this study chaotic signal modeling is used based on noise and detecting anomalies before an earthquake using artificial neural networks (ANNs). Artificial neural networks are efficient tools for solving complex problems such as prediction and identification. In this study, the effective features of chaotic signal model is obtained considering noise and detection of anomalies five minutes before an earthquake occurrence. Neuro-fuzzy classifier and MLP neural network approaches showed acceptable accuracy of 84.6491% and 82.8947%, respectively. Results demonstrate that the proposed method is an effective seismic signal model based on noise and anomaly detection before an earthquake.