{"title":"基于块的图像和视频压缩感知","authors":"J. Fowler, Sungkwang Mun, Eric W. Tramel","doi":"10.1561/2000000033","DOIUrl":null,"url":null,"abstract":"A number of techniques for the compressed sensing of imagery are surveyed. Various imaging media are considered, including still images, motion video, as well as multiview image sets and multiview video. A particular emphasis is placed on block-based compressed sensing due to its advantages in terms of both lightweight reconstruction complexity as well as a reduced memory burden for the random-projection measurement operator. For multiple-image scenarios, including video and multiview imagery, motion and disparity compensation is employed to exploit frame-to-frame redundancies due to object motion and parallax, resulting in residual frames which are more compressible and thus more easily reconstructed from compressed-sensing measurements. Extensive experimental comparisons evaluate various prominent reconstruction algorithms for still-image, motion-video, and multiview scenarios in terms of both reconstruction quality as well as computational complexity.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"103 1","pages":"297-416"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":"{\"title\":\"Block-Based Compressed Sensing of Images and Video\",\"authors\":\"J. Fowler, Sungkwang Mun, Eric W. Tramel\",\"doi\":\"10.1561/2000000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of techniques for the compressed sensing of imagery are surveyed. Various imaging media are considered, including still images, motion video, as well as multiview image sets and multiview video. A particular emphasis is placed on block-based compressed sensing due to its advantages in terms of both lightweight reconstruction complexity as well as a reduced memory burden for the random-projection measurement operator. For multiple-image scenarios, including video and multiview imagery, motion and disparity compensation is employed to exploit frame-to-frame redundancies due to object motion and parallax, resulting in residual frames which are more compressible and thus more easily reconstructed from compressed-sensing measurements. Extensive experimental comparisons evaluate various prominent reconstruction algorithms for still-image, motion-video, and multiview scenarios in terms of both reconstruction quality as well as computational complexity.\",\"PeriodicalId\":12340,\"journal\":{\"name\":\"Found. Trends Signal Process.\",\"volume\":\"103 1\",\"pages\":\"297-416\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"192\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2000000033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Block-Based Compressed Sensing of Images and Video
A number of techniques for the compressed sensing of imagery are surveyed. Various imaging media are considered, including still images, motion video, as well as multiview image sets and multiview video. A particular emphasis is placed on block-based compressed sensing due to its advantages in terms of both lightweight reconstruction complexity as well as a reduced memory burden for the random-projection measurement operator. For multiple-image scenarios, including video and multiview imagery, motion and disparity compensation is employed to exploit frame-to-frame redundancies due to object motion and parallax, resulting in residual frames which are more compressible and thus more easily reconstructed from compressed-sensing measurements. Extensive experimental comparisons evaluate various prominent reconstruction algorithms for still-image, motion-video, and multiview scenarios in terms of both reconstruction quality as well as computational complexity.