{"title":"铝在冲击压缩下的电阻率","authors":"S. Gilev, V. S. Prokopiev","doi":"10.25205/2541-9447-2021-16-1-101-108","DOIUrl":null,"url":null,"abstract":"Electrical resistance measurements of aluminum foil are conducted under shock compression using the electric contact technique. Shock wave pressure p dependences of the electrical resistance R and the resistivity r are obtained for pressure range up to 22 GPa. The found dependence R(p) is a monotonically increasing smooth function of the pressure. The dependence r(p) is more complex: with increasing pressure, the electrical resistivity first decreases and then increases.","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"37 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Resistivity of Aluminum under Shock Compression\",\"authors\":\"S. Gilev, V. S. Prokopiev\",\"doi\":\"10.25205/2541-9447-2021-16-1-101-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical resistance measurements of aluminum foil are conducted under shock compression using the electric contact technique. Shock wave pressure p dependences of the electrical resistance R and the resistivity r are obtained for pressure range up to 22 GPa. The found dependence R(p) is a monotonically increasing smooth function of the pressure. The dependence r(p) is more complex: with increasing pressure, the electrical resistivity first decreases and then increases.\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25205/2541-9447-2021-16-1-101-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/2541-9447-2021-16-1-101-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Electrical Resistivity of Aluminum under Shock Compression
Electrical resistance measurements of aluminum foil are conducted under shock compression using the electric contact technique. Shock wave pressure p dependences of the electrical resistance R and the resistivity r are obtained for pressure range up to 22 GPa. The found dependence R(p) is a monotonically increasing smooth function of the pressure. The dependence r(p) is more complex: with increasing pressure, the electrical resistivity first decreases and then increases.