面向孟加拉语处理的词嵌入研究

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC EMITTER-International Journal of Engineering Technology Pub Date : 2021-05-24 DOI:10.14419/ijet.v10i2.31538
M. Kowsher, M. J. Uddin, A. Tahabilder, Nusrat Jahan Prottasha, Mahid Ahmed, K. M. R. Alam, Tamanna Sultana
{"title":"面向孟加拉语处理的词嵌入研究","authors":"M. Kowsher, M. J. Uddin, A. Tahabilder, Nusrat Jahan Prottasha, Mahid Ahmed, K. M. R. Alam, Tamanna Sultana","doi":"10.14419/ijet.v10i2.31538","DOIUrl":null,"url":null,"abstract":"Progression in machine learning and statistical inference are facilitating the advancement of domains like computer vision, natural language processing (NLP), automation & robotics, and so on. Among the different persuasive improvements in NLP, word embedding is one of the most used and revolutionary techniques. In this paper, we manifest an open-source library for Bangla word extraction systems named BnVec which expects to furnish the Bangla NLP research community by the utilization of some incredible word embedding techniques. The BnVec is splitted up into two parts, the first one is the Bangla suitable defined class to embed words with access to the six most popular word embedding schemes (CountVectorizer, TF-IDF, Hash Vectorizer, Word2vec, fastText, and Glove). The other one is based on the pre-trained distributed word embedding system of Word2vec, fastText, and GloVe. The pre-trained models have been built by collecting content from the newspaper, social media, and Bangla wiki articles. The total number of tokens used to build the models exceeds 395,289,960. The paper additionally depicts the performance of these models by various hyper-parameter tuning and then analyzes the results.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"34 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BnVec: Towards the Development of Word Embedding for Bangla Language Processing\",\"authors\":\"M. Kowsher, M. J. Uddin, A. Tahabilder, Nusrat Jahan Prottasha, Mahid Ahmed, K. M. R. Alam, Tamanna Sultana\",\"doi\":\"10.14419/ijet.v10i2.31538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progression in machine learning and statistical inference are facilitating the advancement of domains like computer vision, natural language processing (NLP), automation & robotics, and so on. Among the different persuasive improvements in NLP, word embedding is one of the most used and revolutionary techniques. In this paper, we manifest an open-source library for Bangla word extraction systems named BnVec which expects to furnish the Bangla NLP research community by the utilization of some incredible word embedding techniques. The BnVec is splitted up into two parts, the first one is the Bangla suitable defined class to embed words with access to the six most popular word embedding schemes (CountVectorizer, TF-IDF, Hash Vectorizer, Word2vec, fastText, and Glove). The other one is based on the pre-trained distributed word embedding system of Word2vec, fastText, and GloVe. The pre-trained models have been built by collecting content from the newspaper, social media, and Bangla wiki articles. The total number of tokens used to build the models exceeds 395,289,960. The paper additionally depicts the performance of these models by various hyper-parameter tuning and then analyzes the results.\",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijet.v10i2.31538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijet.v10i2.31538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

机器学习和统计推理的进步促进了计算机视觉、自然语言处理(NLP)、自动化和机器人等领域的进步。在各种说服性的NLP改进中,词嵌入是最常用和最具革命性的技术之一。在本文中,我们展示了一个名为BnVec的孟加拉语词提取系统的开源库,希望通过利用一些令人难以置信的词嵌入技术为孟加拉语NLP研究社区提供帮助。BnVec分为两部分,第一部分是孟加拉语合适的定义类,用于嵌入单词,可以访问六种最流行的单词嵌入方案(CountVectorizer、TF-IDF、Hash Vectorizer、Word2vec、fastText和Glove)。另一种是基于Word2vec、fastText和GloVe的预训练分布式词嵌入系统。通过从报纸、社交媒体和孟加拉维基文章中收集内容,建立了预训练模型。用于构建模型的令牌总数超过395,289,960。此外,本文还描述了这些模型通过各种超参数调整后的性能,并对结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BnVec: Towards the Development of Word Embedding for Bangla Language Processing
Progression in machine learning and statistical inference are facilitating the advancement of domains like computer vision, natural language processing (NLP), automation & robotics, and so on. Among the different persuasive improvements in NLP, word embedding is one of the most used and revolutionary techniques. In this paper, we manifest an open-source library for Bangla word extraction systems named BnVec which expects to furnish the Bangla NLP research community by the utilization of some incredible word embedding techniques. The BnVec is splitted up into two parts, the first one is the Bangla suitable defined class to embed words with access to the six most popular word embedding schemes (CountVectorizer, TF-IDF, Hash Vectorizer, Word2vec, fastText, and Glove). The other one is based on the pre-trained distributed word embedding system of Word2vec, fastText, and GloVe. The pre-trained models have been built by collecting content from the newspaper, social media, and Bangla wiki articles. The total number of tokens used to build the models exceeds 395,289,960. The paper additionally depicts the performance of these models by various hyper-parameter tuning and then analyzes the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
Hardware Trojan Detection and Mitigation in NoC using Key authentication and Obfuscation Techniques Estimation of Confidence in the Dialogue based on Eye Gaze and Head Movement Information Experimental Study of Hydroformed Al6061T4 Elliptical Tube Samples under Different Internal Pressures Numerical Study of a Wind Turbine Blade Modification Using 30° Angle Winglet on Clark Y Foil 3D Visualization for Lung Surface Images of Covid-19 Patients based on U-Net CNN Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1