介绍KeyRing自定时微架构和定时驱动设计流程

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IET Computers and Digital Techniques Pub Date : 2021-06-05 DOI:10.1049/cdt2.12032
Mickael Fiorentino, Claude Thibeault, Yvon Savaria
{"title":"介绍KeyRing自定时微架构和定时驱动设计流程","authors":"Mickael Fiorentino,&nbsp;Claude Thibeault,&nbsp;Yvon Savaria","doi":"10.1049/cdt2.12032","DOIUrl":null,"url":null,"abstract":"<p>A self-timed microarchitecture called <i>KeyRing</i> is presented, and a method for implementing KeyRing circuits compatible with a timing-driven electronic design automation (EDA) flow is discussed. The KeyRing microarchitecture is derived from the AnARM, a low-power self-timed ARM processor based on ad hoc design principles. First, the unorthodox design style and circuit structures are revisited. A theoretical model that can support the design of generic circuits and the elaboration of EDA methods is then presented. Also addressed are the compatibility issues between KeyRing circuits and timing-driven EDA flows. The proposed method leverages relative timing constraints to translate the timing relations in a KeyRing circuit into a set of timing constraints that enable timing-driven synthesis and static timing analysis. Finally, two 32-bit RISC-V processors are presented; called KeyV and based on KeyRing microarchitectures, they are synthesized in a 65 nm technology using the proposed EDA flow. Postsynthesis results demonstrate the effectiveness of the design methodology and allow comparisons with a synchronous alternative called SynV. Performance and power consumption evaluations show that KeyV has a power efficiency that lies between SynV with clock-gating and SynV without clock-gating.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 6","pages":"409-426"},"PeriodicalIF":1.1000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12032","citationCount":"1","resultStr":"{\"title\":\"Introducing KeyRing self-timed microarchitecture and timing-driven design flow\",\"authors\":\"Mickael Fiorentino,&nbsp;Claude Thibeault,&nbsp;Yvon Savaria\",\"doi\":\"10.1049/cdt2.12032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A self-timed microarchitecture called <i>KeyRing</i> is presented, and a method for implementing KeyRing circuits compatible with a timing-driven electronic design automation (EDA) flow is discussed. The KeyRing microarchitecture is derived from the AnARM, a low-power self-timed ARM processor based on ad hoc design principles. First, the unorthodox design style and circuit structures are revisited. A theoretical model that can support the design of generic circuits and the elaboration of EDA methods is then presented. Also addressed are the compatibility issues between KeyRing circuits and timing-driven EDA flows. The proposed method leverages relative timing constraints to translate the timing relations in a KeyRing circuit into a set of timing constraints that enable timing-driven synthesis and static timing analysis. Finally, two 32-bit RISC-V processors are presented; called KeyV and based on KeyRing microarchitectures, they are synthesized in a 65 nm technology using the proposed EDA flow. Postsynthesis results demonstrate the effectiveness of the design methodology and allow comparisons with a synchronous alternative called SynV. Performance and power consumption evaluations show that KeyV has a power efficiency that lies between SynV with clock-gating and SynV without clock-gating.</p>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"15 6\",\"pages\":\"409-426\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12032\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12032\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种称为KeyRing的自定时微架构,并讨论了一种与定时驱动的电子设计自动化(EDA)流程兼容的KeyRing电路的实现方法。KeyRing微架构源自AnARM, AnARM是一种基于ad hoc设计原则的低功耗自定时ARM处理器。首先,重新审视了非正统的设计风格和电路结构。然后提出了一个理论模型,可以支持通用电路的设计和EDA方法的阐述。还讨论了KeyRing电路和时序驱动的EDA流之间的兼容性问题。所提出的方法利用相对时序约束将KeyRing电路中的时序关系转化为一组时序约束,从而实现时序驱动合成和静态时序分析。最后,给出了两个32位RISC-V处理器;它们被称为KeyV,基于KeyRing微架构,使用拟议的EDA流程在65纳米技术中合成。合成后的结果证明了设计方法的有效性,并允许与同步替代方案SynV进行比较。性能和功耗评估表明,KeyV的功率效率介于带时钟门控的SynV和不带时钟门控的SynV之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing KeyRing self-timed microarchitecture and timing-driven design flow

A self-timed microarchitecture called KeyRing is presented, and a method for implementing KeyRing circuits compatible with a timing-driven electronic design automation (EDA) flow is discussed. The KeyRing microarchitecture is derived from the AnARM, a low-power self-timed ARM processor based on ad hoc design principles. First, the unorthodox design style and circuit structures are revisited. A theoretical model that can support the design of generic circuits and the elaboration of EDA methods is then presented. Also addressed are the compatibility issues between KeyRing circuits and timing-driven EDA flows. The proposed method leverages relative timing constraints to translate the timing relations in a KeyRing circuit into a set of timing constraints that enable timing-driven synthesis and static timing analysis. Finally, two 32-bit RISC-V processors are presented; called KeyV and based on KeyRing microarchitectures, they are synthesized in a 65 nm technology using the proposed EDA flow. Postsynthesis results demonstrate the effectiveness of the design methodology and allow comparisons with a synchronous alternative called SynV. Performance and power consumption evaluations show that KeyV has a power efficiency that lies between SynV with clock-gating and SynV without clock-gating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
期刊最新文献
E-Commerce Logistics Software Package Tracking and Route Planning and Optimization System of Embedded Technology Based on the Intelligent Era A Configurable Accelerator for CNN-Based Remote Sensing Object Detection on FPGAs A FPGA Accelerator of Distributed A3C Algorithm with Optimal Resource Deployment An Efficient RTL Design for a Wearable Brain–Computer Interface Adaptive Shrink and Shard Architecture Design for Blockchain Storage Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1