传感器丰富的视频序列的自动地理元数据校正

Yifang Yin, Guanfeng Wang, Roger Zimmermann
{"title":"传感器丰富的视频序列的自动地理元数据校正","authors":"Yifang Yin, Guanfeng Wang, Roger Zimmermann","doi":"10.1145/2996913.2997015","DOIUrl":null,"url":null,"abstract":"Videos recorded with current mobile devices are increasingly geotagged at fine granularity and used in various location- based applications and services. However, raw sensor data collected is often noisy, resulting in subsequent inaccurate geospatial analysis. In this study, we focus on the challenging correction of compass readings and present an automatic approach to reduce these metadata errors. Given the small geo-distance between consecutive video frames, image-based localization does not work due to the high ambiguity in the depth reconstruction of the scene. As an alternative, we collect geographic context from OpenStreetMap and estimate the absolute viewing direction by comparing the image scene to world projections obtained with different external camera parameters. To design a comprehensive model, we further incorporate smooth approximation and feature-based rotation estimation when formulating the error terms. Experimental results show that our proposed pyramid-based method outperforms its competitors and reduces orientation errors by an average of 58.8%. Hence, for downstream applications, improved results can be obtained with these more accurate geo-metadata. To illustrate, we present the performance gain in landmark retrieval and tag suggestion by utilizing the accuracy-enhanced geo-metadata.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic geographic metadata correction for sensor-rich video sequences\",\"authors\":\"Yifang Yin, Guanfeng Wang, Roger Zimmermann\",\"doi\":\"10.1145/2996913.2997015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Videos recorded with current mobile devices are increasingly geotagged at fine granularity and used in various location- based applications and services. However, raw sensor data collected is often noisy, resulting in subsequent inaccurate geospatial analysis. In this study, we focus on the challenging correction of compass readings and present an automatic approach to reduce these metadata errors. Given the small geo-distance between consecutive video frames, image-based localization does not work due to the high ambiguity in the depth reconstruction of the scene. As an alternative, we collect geographic context from OpenStreetMap and estimate the absolute viewing direction by comparing the image scene to world projections obtained with different external camera parameters. To design a comprehensive model, we further incorporate smooth approximation and feature-based rotation estimation when formulating the error terms. Experimental results show that our proposed pyramid-based method outperforms its competitors and reduces orientation errors by an average of 58.8%. Hence, for downstream applications, improved results can be obtained with these more accurate geo-metadata. To illustrate, we present the performance gain in landmark retrieval and tag suggestion by utilizing the accuracy-enhanced geo-metadata.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2997015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2997015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

用当前的移动设备录制的视频越来越多地以精细的粒度进行地理标记,并用于各种基于位置的应用程序和服务。然而,收集到的原始传感器数据往往有噪声,导致随后的地理空间分析不准确。在本研究中,我们重点研究了具有挑战性的罗盘读数校正,并提出了一种自动方法来减少这些元数据误差。考虑到连续视频帧之间的地理距离较小,基于图像的定位由于场景深度重建的高模糊性而无法工作。作为替代方案,我们从OpenStreetMap中收集地理环境,并通过将图像场景与使用不同外部相机参数获得的世界投影进行比较来估计绝对观看方向。为了设计一个全面的模型,我们在制定误差项时进一步结合光滑近似和基于特征的旋转估计。实验结果表明,我们提出的基于金字塔的定位方法优于同类方法,平均降低了58.8%的定位误差。因此,对于下游应用程序,可以使用这些更精确的地理元数据获得改进的结果。为了说明这一点,我们展示了利用精度增强的地理元数据在地标检索和标签建议方面的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic geographic metadata correction for sensor-rich video sequences
Videos recorded with current mobile devices are increasingly geotagged at fine granularity and used in various location- based applications and services. However, raw sensor data collected is often noisy, resulting in subsequent inaccurate geospatial analysis. In this study, we focus on the challenging correction of compass readings and present an automatic approach to reduce these metadata errors. Given the small geo-distance between consecutive video frames, image-based localization does not work due to the high ambiguity in the depth reconstruction of the scene. As an alternative, we collect geographic context from OpenStreetMap and estimate the absolute viewing direction by comparing the image scene to world projections obtained with different external camera parameters. To design a comprehensive model, we further incorporate smooth approximation and feature-based rotation estimation when formulating the error terms. Experimental results show that our proposed pyramid-based method outperforms its competitors and reduces orientation errors by an average of 58.8%. Hence, for downstream applications, improved results can be obtained with these more accurate geo-metadata. To illustrate, we present the performance gain in landmark retrieval and tag suggestion by utilizing the accuracy-enhanced geo-metadata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1