声发射技术评价不锈钢ss316ln疲劳裂纹扩展特性

R. Prakash, M. Thomas
{"title":"声发射技术评价不锈钢ss316ln疲劳裂纹扩展特性","authors":"R. Prakash, M. Thomas","doi":"10.1115/IMECE2020-23751","DOIUrl":null,"url":null,"abstract":"\n Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot.\n The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Fatigue Crack Growth Characteristics on Stainless Steel SS 316 LN Using Acoustic Emission Technique\",\"authors\":\"R. Prakash, M. Thomas\",\"doi\":\"10.1115/IMECE2020-23751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot.\\n The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.\",\"PeriodicalId\":23837,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2020-23751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了不锈钢ss316ln疲劳裂纹扩展速率在线声发射监测结果。在环境温度和600°C (873K)下的实验中,考虑了两种试样几何形状-即标准紧绷(C(T))试样和侧槽C(T)试样。实验过程中,裂纹长度增量与声发射累计次数和累积能量的增加有较好的对应关系。在试件厚度方向上引入的侧凹槽约束了裂纹尖端前方的塑性区,从而加强了裂纹处的平面应变条件。侧槽试样裂纹扩展初期声发射活性降低。利用声发射(AE)技术观察了向ii阶段裂纹扩展的过渡,否则在疲劳裂纹扩展图中无法看到。该工作进一步尝试将不锈钢在高温(873K)疲劳裂纹扩展过程中获得的声发射参数联系起来。为了获取受热区外的声发射信号,采用波导传输高温下试样的声波。通过高温试验,得到了裂纹扩展与声发射参数的相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Fatigue Crack Growth Characteristics on Stainless Steel SS 316 LN Using Acoustic Emission Technique
Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot. The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS) Crystalline Phase Changes Due to High-Speed Projectiles Impact on HY100 Steel Mechanical Properties of Snap-Fits Fabricated by Selective Laser Sintering From Polyamide Chemical Structure Analysis of Carbon-Doped Silicon Oxide Thin Films by Plasma-Enhanced Chemical Vapor Deposition of Tetrakis(Trimethylsilyloxy)Silane Precursor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1