钛合金与轻合金异种焊接研究进展

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2021-01-01 DOI:10.1051/METAL/2021011
Yan Zhang, Deshui Yu, Jianping Zhou, Daqian Sun
{"title":"钛合金与轻合金异种焊接研究进展","authors":"Yan Zhang, Deshui Yu, Jianping Zhou, Daqian Sun","doi":"10.1051/METAL/2021011","DOIUrl":null,"url":null,"abstract":"Titanium (Ti) alloys are widely used in industrial manufacturing, medical treatment, vehicles, and other fields. When welded with other alloys, due to great differences in physical and chemical properties of these materials, cracks easily appear in the joint, and obtaining stable welded joints is difficult. Results show that brittle intermetallic compounds (IMCs) formed in the welding process could reduce the plasticity of the joint. This review aimed to provide a comprehensive overview of the recent progress in welding and joining of Ti alloy and light alloys and to introduce current research and application. The methods available for welding Ti alloy and light alloys included fusion welding, brazing, diffusion bonding, friction welding and reactive joining. In this study, control methods of brittle IMCs in the welding process of Ti and other alloys and various improvement measures studied at home and abroad are described.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A review of dissimilar welding for titanium alloys with light alloys\",\"authors\":\"Yan Zhang, Deshui Yu, Jianping Zhou, Daqian Sun\",\"doi\":\"10.1051/METAL/2021011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium (Ti) alloys are widely used in industrial manufacturing, medical treatment, vehicles, and other fields. When welded with other alloys, due to great differences in physical and chemical properties of these materials, cracks easily appear in the joint, and obtaining stable welded joints is difficult. Results show that brittle intermetallic compounds (IMCs) formed in the welding process could reduce the plasticity of the joint. This review aimed to provide a comprehensive overview of the recent progress in welding and joining of Ti alloy and light alloys and to introduce current research and application. The methods available for welding Ti alloy and light alloys included fusion welding, brazing, diffusion bonding, friction welding and reactive joining. In this study, control methods of brittle IMCs in the welding process of Ti and other alloys and various improvement measures studied at home and abroad are described.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/METAL/2021011\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021011","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 4

摘要

钛(Ti)合金广泛应用于工业制造、医疗、车辆等领域。当与其他合金焊接时,由于这些材料的物理和化学性能差异很大,接头容易出现裂纹,难以获得稳定的焊接接头。结果表明,焊接过程中形成的脆性金属间化合物(IMCs)会降低接头的塑性。本文综述了钛合金及轻合金焊接与连接的最新进展,并介绍了目前的研究和应用情况。可用于焊接钛合金和轻合金的方法有熔焊、钎焊、扩散焊、摩擦焊和反应焊。本文介绍了钛等合金焊接过程中脆性IMCs的控制方法以及国内外研究的各种改进措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of dissimilar welding for titanium alloys with light alloys
Titanium (Ti) alloys are widely used in industrial manufacturing, medical treatment, vehicles, and other fields. When welded with other alloys, due to great differences in physical and chemical properties of these materials, cracks easily appear in the joint, and obtaining stable welded joints is difficult. Results show that brittle intermetallic compounds (IMCs) formed in the welding process could reduce the plasticity of the joint. This review aimed to provide a comprehensive overview of the recent progress in welding and joining of Ti alloy and light alloys and to introduce current research and application. The methods available for welding Ti alloy and light alloys included fusion welding, brazing, diffusion bonding, friction welding and reactive joining. In this study, control methods of brittle IMCs in the welding process of Ti and other alloys and various improvement measures studied at home and abroad are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1