使用先进的计算技术模拟井眼清洗的数字解决方案

K. Deshpande, M. A. Celigueta, S. Latorre, E. Oñate, P. Naphade
{"title":"使用先进的计算技术模拟井眼清洗的数字解决方案","authors":"K. Deshpande, M. A. Celigueta, S. Latorre, E. Oñate, P. Naphade","doi":"10.2118/197864-ms","DOIUrl":null,"url":null,"abstract":"\n Cuttings transport and hole-cleaning is a challenging issue associated with the efficiency of wellbore hydraulics and drilling operation. Traditional methods used to understand hole cleaning problems are based on field observations and extensive flow loop testing to formulate empirical correlations and mechanistic models. The focus of this study is to create digital twin utilizing advanced simulation techniques that provides better insight for cuttings transport and hole-cleaning. This study explores the use of Eulerian-Lagrangian based numerical techniques to estimate critical flow rate needed for efficient hole cleaning. Digital twin for the cuttings transport is formulated utilizing three dimensional Navier stokes equations employing combination of Eulerian and lagrangian approaches to model the drilling mud flow and cuttings interaction with the drilling mud, wellbore walls and between cuttings themselves. One of the important model to estimate the drag force on cuttings is modified for non-spherical cuttings shape coupled with non-newtonian Herschel Bulkley behavior of the drilling mud in this work. The influence of important parameters, such as fluid rheology, rotation of drill-string, and inclination of wellbore on the hole-cleaning process is investigated. Digital solutions are compared against the published data for Newtonian and non-Newtonian drilling fluids under different wellbore configurations. The advanced computational simulation involving novel drag force correlation and unique combination of numerical methods allowed to create digital twin for cuttings transport process accurately. The numerical strategy utilizing modified drag law showed a very good match with experimental results for straight vertical wellbore, the cuttings transport velocity estimated by digital solutions was within 5% difference of experimental results. Further upon validation, numerical results are successfully computed for drill -string rotation effects which clearly showed physics of cuttings transported efficiently with added energy due to rotation. The phenomenon of cuttings bed sliding in inclined and horizontal wellbores is also correctly simulated with the proposed drag law and numerical methods. The proposed methodology works without any issues with high concentration of cuttings and provides detailed insight into cuttings flow path and effect of various operational parameters on hole cleaning. Advanced computational simulations and modification of drag force law assisted in formulating digital twin that provided excellent insights in understanding effects of operational parameters for efficient hole cleaning.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Digital Solutions Using Advanced Computational Techniques to Simulate Hole Cleaning\",\"authors\":\"K. Deshpande, M. A. Celigueta, S. Latorre, E. Oñate, P. Naphade\",\"doi\":\"10.2118/197864-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cuttings transport and hole-cleaning is a challenging issue associated with the efficiency of wellbore hydraulics and drilling operation. Traditional methods used to understand hole cleaning problems are based on field observations and extensive flow loop testing to formulate empirical correlations and mechanistic models. The focus of this study is to create digital twin utilizing advanced simulation techniques that provides better insight for cuttings transport and hole-cleaning. This study explores the use of Eulerian-Lagrangian based numerical techniques to estimate critical flow rate needed for efficient hole cleaning. Digital twin for the cuttings transport is formulated utilizing three dimensional Navier stokes equations employing combination of Eulerian and lagrangian approaches to model the drilling mud flow and cuttings interaction with the drilling mud, wellbore walls and between cuttings themselves. One of the important model to estimate the drag force on cuttings is modified for non-spherical cuttings shape coupled with non-newtonian Herschel Bulkley behavior of the drilling mud in this work. The influence of important parameters, such as fluid rheology, rotation of drill-string, and inclination of wellbore on the hole-cleaning process is investigated. Digital solutions are compared against the published data for Newtonian and non-Newtonian drilling fluids under different wellbore configurations. The advanced computational simulation involving novel drag force correlation and unique combination of numerical methods allowed to create digital twin for cuttings transport process accurately. The numerical strategy utilizing modified drag law showed a very good match with experimental results for straight vertical wellbore, the cuttings transport velocity estimated by digital solutions was within 5% difference of experimental results. Further upon validation, numerical results are successfully computed for drill -string rotation effects which clearly showed physics of cuttings transported efficiently with added energy due to rotation. The phenomenon of cuttings bed sliding in inclined and horizontal wellbores is also correctly simulated with the proposed drag law and numerical methods. The proposed methodology works without any issues with high concentration of cuttings and provides detailed insight into cuttings flow path and effect of various operational parameters on hole cleaning. Advanced computational simulations and modification of drag force law assisted in formulating digital twin that provided excellent insights in understanding effects of operational parameters for efficient hole cleaning.\",\"PeriodicalId\":11061,\"journal\":{\"name\":\"Day 1 Mon, November 11, 2019\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 11, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197864-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 11, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197864-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

岩屑输送和井眼清洗是一个具有挑战性的问题,它关系到井筒水力和钻井作业的效率。了解井眼清洗问题的传统方法是基于现场观察和大量的流动环测试,以建立经验相关性和机制模型。本研究的重点是利用先进的模拟技术创建数字孪生体,为岩屑运移和井眼清洁提供更好的见解。本研究探索了使用欧拉-拉格朗日数值技术来估计有效清洗井眼所需的临界流量。岩屑运移的数字孪生模型是利用三维Navier stokes方程,结合欧拉和拉格朗日方法来模拟钻井泥浆流动、岩屑与钻井泥浆、井壁以及岩屑之间的相互作用。针对非球形岩屑形状和钻井泥浆的非牛顿Herschel Bulkley特性,对估算岩屑阻力的一个重要模型进行了修正。研究了流体流变性、钻柱旋转、井眼倾角等重要参数对井眼清洗过程的影响。将数字解决方案与牛顿和非牛顿钻井液在不同井眼结构下的公开数据进行比较。采用先进的计算模拟技术,结合新颖的阻力相关性和独特的数值方法,可以精确地创建岩屑传输过程的数字孪生。采用修正阻力定律的数值计算策略与实验结果吻合较好,数值计算得到的岩屑输运速度与实验结果相差在5%以内。在进一步验证的基础上,成功地计算了钻柱旋转效应的数值结果,清楚地显示了由于旋转而增加能量的岩屑的物理传输。采用所提出的阻力规律和数值方法对斜井和水平井中岩屑床滑动现象进行了正确的模拟。该方法适用于高浓度的岩屑,并提供岩屑流动路径和各种操作参数对井眼清洁的影响的详细信息。先进的计算模拟和阻力规律的修正有助于制定数字孪生模型,为了解操作参数对高效井眼清洗的影响提供了极好的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Solutions Using Advanced Computational Techniques to Simulate Hole Cleaning
Cuttings transport and hole-cleaning is a challenging issue associated with the efficiency of wellbore hydraulics and drilling operation. Traditional methods used to understand hole cleaning problems are based on field observations and extensive flow loop testing to formulate empirical correlations and mechanistic models. The focus of this study is to create digital twin utilizing advanced simulation techniques that provides better insight for cuttings transport and hole-cleaning. This study explores the use of Eulerian-Lagrangian based numerical techniques to estimate critical flow rate needed for efficient hole cleaning. Digital twin for the cuttings transport is formulated utilizing three dimensional Navier stokes equations employing combination of Eulerian and lagrangian approaches to model the drilling mud flow and cuttings interaction with the drilling mud, wellbore walls and between cuttings themselves. One of the important model to estimate the drag force on cuttings is modified for non-spherical cuttings shape coupled with non-newtonian Herschel Bulkley behavior of the drilling mud in this work. The influence of important parameters, such as fluid rheology, rotation of drill-string, and inclination of wellbore on the hole-cleaning process is investigated. Digital solutions are compared against the published data for Newtonian and non-Newtonian drilling fluids under different wellbore configurations. The advanced computational simulation involving novel drag force correlation and unique combination of numerical methods allowed to create digital twin for cuttings transport process accurately. The numerical strategy utilizing modified drag law showed a very good match with experimental results for straight vertical wellbore, the cuttings transport velocity estimated by digital solutions was within 5% difference of experimental results. Further upon validation, numerical results are successfully computed for drill -string rotation effects which clearly showed physics of cuttings transported efficiently with added energy due to rotation. The phenomenon of cuttings bed sliding in inclined and horizontal wellbores is also correctly simulated with the proposed drag law and numerical methods. The proposed methodology works without any issues with high concentration of cuttings and provides detailed insight into cuttings flow path and effect of various operational parameters on hole cleaning. Advanced computational simulations and modification of drag force law assisted in formulating digital twin that provided excellent insights in understanding effects of operational parameters for efficient hole cleaning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lessons Learned from History-Matching the First Out-Of-Sequence Fracturing Field Test in North America Energy Saving Challenges and Opportunities in Upstream Operations using Value Methodology An Integrated Solution to Repair Multiple Shallow Leaks in Production Tubing – A Unique Single Trip Well Intervention Technique Openhole Completions as Recovery Case for Drilling Across Salt and High Pressure Floaters The Impact of Dynamic Filtration on Formation Testing in Low Mobility Carbonate Formations. Case Study: Lower Cretaceous Carbonate Reservoir in the UAE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1