{"title":"网络上关联数据的可量化完整性","authors":"Christoph H.-J. Braun, Tobias Käfer","doi":"10.3233/sw-233409","DOIUrl":null,"url":null,"abstract":"We present an approach to publish Linked Data on the Web with quantifiable integrity using Web technologies, and in which rational agents are incentivised to contribute to the integrity of the link network. To this end, we introduce self-verifying resource representations, that include Linked Data Signatures whose signature value is used as a suffix in the resource’s URI. Links among such representations, typically managed as web documents, contribute therefore to preserving the integrity of the resulting document graphs. To quantify how well a document’s integrity can be relied on, we introduce the notion of trust scores and present an interpretation based on hubs and authorities. In addition, we present how specific agent behaviour may be induced by the choice of trust score regarding their optimisation, e.g., in general but also using a heuristic strategy called Additional Reach Strategy (ARS). We discuss our approach in a three-fold evaluation: First, we evaluate the effect of different graph metrics as trust scores on induced agent behaviour and resulting evolution of the document graph. We show that trust scores based on hubs and authorities induce agent behaviour that contributes to integrity preservation in the document graph. Next, we evaluate different heuristics for agents to optimise trust scores when general optimisation strategies are not applicable. We show that ARS outperforms other potential optimisation strategies. Last, we evaluate the whole approach by examining the resilience of integrity preservation in a document graph when resources are deleted. To this end, we propose a simulation system based on the Watts–Strogatz model for simulating a social network. We show that our approach produces a document graph that can recover from such attacks or failures in the document graph.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"12 8 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifiable integrity for Linked Data on the web\",\"authors\":\"Christoph H.-J. Braun, Tobias Käfer\",\"doi\":\"10.3233/sw-233409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to publish Linked Data on the Web with quantifiable integrity using Web technologies, and in which rational agents are incentivised to contribute to the integrity of the link network. To this end, we introduce self-verifying resource representations, that include Linked Data Signatures whose signature value is used as a suffix in the resource’s URI. Links among such representations, typically managed as web documents, contribute therefore to preserving the integrity of the resulting document graphs. To quantify how well a document’s integrity can be relied on, we introduce the notion of trust scores and present an interpretation based on hubs and authorities. In addition, we present how specific agent behaviour may be induced by the choice of trust score regarding their optimisation, e.g., in general but also using a heuristic strategy called Additional Reach Strategy (ARS). We discuss our approach in a three-fold evaluation: First, we evaluate the effect of different graph metrics as trust scores on induced agent behaviour and resulting evolution of the document graph. We show that trust scores based on hubs and authorities induce agent behaviour that contributes to integrity preservation in the document graph. Next, we evaluate different heuristics for agents to optimise trust scores when general optimisation strategies are not applicable. We show that ARS outperforms other potential optimisation strategies. Last, we evaluate the whole approach by examining the resilience of integrity preservation in a document graph when resources are deleted. To this end, we propose a simulation system based on the Watts–Strogatz model for simulating a social network. We show that our approach produces a document graph that can recover from such attacks or failures in the document graph.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"12 8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233409\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233409","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
We present an approach to publish Linked Data on the Web with quantifiable integrity using Web technologies, and in which rational agents are incentivised to contribute to the integrity of the link network. To this end, we introduce self-verifying resource representations, that include Linked Data Signatures whose signature value is used as a suffix in the resource’s URI. Links among such representations, typically managed as web documents, contribute therefore to preserving the integrity of the resulting document graphs. To quantify how well a document’s integrity can be relied on, we introduce the notion of trust scores and present an interpretation based on hubs and authorities. In addition, we present how specific agent behaviour may be induced by the choice of trust score regarding their optimisation, e.g., in general but also using a heuristic strategy called Additional Reach Strategy (ARS). We discuss our approach in a three-fold evaluation: First, we evaluate the effect of different graph metrics as trust scores on induced agent behaviour and resulting evolution of the document graph. We show that trust scores based on hubs and authorities induce agent behaviour that contributes to integrity preservation in the document graph. Next, we evaluate different heuristics for agents to optimise trust scores when general optimisation strategies are not applicable. We show that ARS outperforms other potential optimisation strategies. Last, we evaluate the whole approach by examining the resilience of integrity preservation in a document graph when resources are deleted. To this end, we propose a simulation system based on the Watts–Strogatz model for simulating a social network. We show that our approach produces a document graph that can recover from such attacks or failures in the document graph.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.