基于深度卷积自编码器的随机噪声衰减

M. Zhang, Y. Liu, M. Bai, Y. Chen, Y. Zhang
{"title":"基于深度卷积自编码器的随机噪声衰减","authors":"M. Zhang, Y. Liu, M. Bai, Y. Chen, Y. Zhang","doi":"10.3997/2214-4609.201900852","DOIUrl":null,"url":null,"abstract":"Summary Suppressing random noise is very important to improve the signal-to-noise ratio of seismic data. We propose a novel method to attenuate random noise using deep convolutional autoencoder, which belongs to the unsupervised feature learning. We directly use the noisy data rather than a relatively noise-free data as the training target to construct the cost function and design a robust convolutional autoencoder network that can achieve random noise attenuation. Therefore, we always have an available input dataset to train the neural network, which can save us the trouble of seeking a relatively clean data. We use normalization and patch sampling to build training dataset and test dataset from raw seismic data. The back-propagation algorithm is used to optimize the cost function. The optimized parameters of convolution filters can be obtained after a stable optimization. The final denoised result can be reconstructed via the optimized convolutional autoencoder. Real data test proves the effectiveness of the proposed method.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random Noise Attenuation Using Deep Convolutional Autoencoder\",\"authors\":\"M. Zhang, Y. Liu, M. Bai, Y. Chen, Y. Zhang\",\"doi\":\"10.3997/2214-4609.201900852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Suppressing random noise is very important to improve the signal-to-noise ratio of seismic data. We propose a novel method to attenuate random noise using deep convolutional autoencoder, which belongs to the unsupervised feature learning. We directly use the noisy data rather than a relatively noise-free data as the training target to construct the cost function and design a robust convolutional autoencoder network that can achieve random noise attenuation. Therefore, we always have an available input dataset to train the neural network, which can save us the trouble of seeking a relatively clean data. We use normalization and patch sampling to build training dataset and test dataset from raw seismic data. The back-propagation algorithm is used to optimize the cost function. The optimized parameters of convolution filters can be obtained after a stable optimization. The final denoised result can be reconstructed via the optimized convolutional autoencoder. Real data test proves the effectiveness of the proposed method.\",\"PeriodicalId\":6840,\"journal\":{\"name\":\"81st EAGE Conference and Exhibition 2019\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"81st EAGE Conference and Exhibition 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抑制随机噪声是提高地震资料信噪比的重要手段。提出了一种利用深度卷积自编码器衰减随机噪声的新方法,该方法属于无监督特征学习。我们直接使用带有噪声的数据而不是相对无噪声的数据作为训练目标来构造代价函数,并设计了一个能够实现随机噪声衰减的鲁棒卷积自编码器网络。因此,我们总是有一个可用的输入数据集来训练神经网络,这可以省去我们寻找相对干净的数据的麻烦。在原始地震数据基础上,采用归一化和补丁采样的方法构建训练数据集和测试数据集。采用反向传播算法对代价函数进行优化。经过稳定的优化后,可以得到优化后的卷积滤波器参数。最后的去噪结果可以通过优化后的卷积自编码器进行重构。实际数据测试证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random Noise Attenuation Using Deep Convolutional Autoencoder
Summary Suppressing random noise is very important to improve the signal-to-noise ratio of seismic data. We propose a novel method to attenuate random noise using deep convolutional autoencoder, which belongs to the unsupervised feature learning. We directly use the noisy data rather than a relatively noise-free data as the training target to construct the cost function and design a robust convolutional autoencoder network that can achieve random noise attenuation. Therefore, we always have an available input dataset to train the neural network, which can save us the trouble of seeking a relatively clean data. We use normalization and patch sampling to build training dataset and test dataset from raw seismic data. The back-propagation algorithm is used to optimize the cost function. The optimized parameters of convolution filters can be obtained after a stable optimization. The final denoised result can be reconstructed via the optimized convolutional autoencoder. Real data test proves the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1