提高锅炉篦机飞灰回喷效率

S. D. Gorshenin, S. I. Shuvalov, E. V. Zinovieva, l.A. Kokulin
{"title":"提高锅炉篦机飞灰回喷效率","authors":"S. D. Gorshenin, S. I. Shuvalov, E. V. Zinovieva, l.A. Kokulin","doi":"10.17588/2072-2672.2022.5.018-023","DOIUrl":null,"url":null,"abstract":"A significant disadvantage of grate stokers is great carbon loss. To reduce these losses, the ash caught in the flue is returned to the furnace for afterburning. The effectiveness of this measure depends on the thermal characteristics of coal, the size of the pieces of coal and ash, the degree of carbon elimination, and the design features of the combustion chamber. Normative techniques to calculate and design grate stokers do not consider the features of coal combustion with ash return. Thus, it is relevant to develop the models that describe the creation of ash flows in the boiler path depending on its design, properties and dispersed composition of the burned coal and the aerodynamics of the combustion chamber. Mathematic simulation of the processes of particle size classification has been carried out to describe the creation of ash mass flows on the grate and in the convection chamber. To evaluate the parameters of mathematical models, simulation modeling of gas dynamics of flue gases in the combustion chamber has been carried out with SolidWorks software. The authors have developed a mathematical model and the method to identify its parameters. It allows us to obtain quantitative estimates of the economic efficiency of boilers with grate firing of coal. Thus, a computer program has been developed. The authors have used the program and the Neryungri brown coal to burn in the KV-TS-30-150 boiler. The results have shown that carbon loss without fly ash reinjection is 11,27 %. Introduction of fly-coke return unit reduces the loss up to 10,45 %. It is established that elimination of slit windows in the rotary baffle will lead to a change of the trajectories of ash particles and carbon losses reduction up to 10,17 %. Limiting the maximum size of coal pieces to 50 mm will lead to a more noticeable increase of boiler efficiency. The calculations have showed that in case the value of the carbon burn out factor equals 0,935, the carbon loss when the system of fly ash reinjection is turned off, its commissioning and, in addition, an increase of the gas density of the rotary screen will be 4 ,88%, 4,44% and 4,3% respectively. In case of a more careful assessment of the burnout factor at the level of 0,9, the carbon loss will be 7,51%, 6,87% and 6,65% respectively. The developed mathematical model makes it possible to evaluate the effect of the operation of the fly ash reinjection unit on the efficiency of the operation of a boiler with a grate stoker. Validation of a model for adequacy and for accuracy increase can be carried out after field testing of the boiler equipment.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the efficiency of fly ash reinjection in grate stoker of boiler\",\"authors\":\"S. D. Gorshenin, S. I. Shuvalov, E. V. Zinovieva, l.A. Kokulin\",\"doi\":\"10.17588/2072-2672.2022.5.018-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant disadvantage of grate stokers is great carbon loss. To reduce these losses, the ash caught in the flue is returned to the furnace for afterburning. The effectiveness of this measure depends on the thermal characteristics of coal, the size of the pieces of coal and ash, the degree of carbon elimination, and the design features of the combustion chamber. Normative techniques to calculate and design grate stokers do not consider the features of coal combustion with ash return. Thus, it is relevant to develop the models that describe the creation of ash flows in the boiler path depending on its design, properties and dispersed composition of the burned coal and the aerodynamics of the combustion chamber. Mathematic simulation of the processes of particle size classification has been carried out to describe the creation of ash mass flows on the grate and in the convection chamber. To evaluate the parameters of mathematical models, simulation modeling of gas dynamics of flue gases in the combustion chamber has been carried out with SolidWorks software. The authors have developed a mathematical model and the method to identify its parameters. It allows us to obtain quantitative estimates of the economic efficiency of boilers with grate firing of coal. Thus, a computer program has been developed. The authors have used the program and the Neryungri brown coal to burn in the KV-TS-30-150 boiler. The results have shown that carbon loss without fly ash reinjection is 11,27 %. Introduction of fly-coke return unit reduces the loss up to 10,45 %. It is established that elimination of slit windows in the rotary baffle will lead to a change of the trajectories of ash particles and carbon losses reduction up to 10,17 %. Limiting the maximum size of coal pieces to 50 mm will lead to a more noticeable increase of boiler efficiency. The calculations have showed that in case the value of the carbon burn out factor equals 0,935, the carbon loss when the system of fly ash reinjection is turned off, its commissioning and, in addition, an increase of the gas density of the rotary screen will be 4 ,88%, 4,44% and 4,3% respectively. In case of a more careful assessment of the burnout factor at the level of 0,9, the carbon loss will be 7,51%, 6,87% and 6,65% respectively. The developed mathematical model makes it possible to evaluate the effect of the operation of the fly ash reinjection unit on the efficiency of the operation of a boiler with a grate stoker. Validation of a model for adequacy and for accuracy increase can be carried out after field testing of the boiler equipment.\",\"PeriodicalId\":23635,\"journal\":{\"name\":\"Vestnik IGEU\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik IGEU\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17588/2072-2672.2022.5.018-023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik IGEU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17588/2072-2672.2022.5.018-023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

排炉的一个显著缺点是碳损失大。为了减少这些损失,在烟道中捕获的灰被送回炉膛进行加力燃烧。这一措施的有效性取决于煤的热特性、煤块和灰分的大小、碳的消除程度以及燃烧室的设计特点。规范的炉排炉计算和设计技术没有考虑煤的燃烧特性。因此,根据锅炉路径的设计、特性和燃烧煤的分散成分以及燃烧室的空气动力学,开发描述锅炉路径中灰流产生的模型是相关的。本文对粒度分级过程进行了数学模拟,以描述篦上和对流室中灰质量流的产生。为了评估数学模型的参数,利用SolidWorks软件对燃烧室烟气的气体动力学进行了仿真建模。作者建立了一个数学模型和参数辨识方法。它使我们能够定量地估计篦烧锅炉的经济效益。因此,一个计算机程序被开发出来了。在KV-TS-30-150型锅炉上,采用该方案和内龙日褐煤进行了燃烧。结果表明,不回喷粉煤灰的碳损失率为11.27%。引入飞焦回流装置后,损失降低10.45%。结果表明,在旋转挡板上消除狭缝窗将导致灰颗粒轨迹的改变,碳损失减少高达10.17%。将最大煤块尺寸限制在50mm以内,锅炉效率的提高更为明显。计算结果表明,当碳燃尽系数为0.935时,关闭飞灰回喷系统后的碳损失量、系统调试后的碳损失量以及转筛气体密度增加量分别为4.88%、4.44%和4.3%。如果在0,9水平上更仔细地评估燃尽因子,则碳损失将分别为7,51%,6,87%和6,65%。建立的数学模型使评价飞灰回喷机组运行对篦式锅炉运行效率的影响成为可能。在对锅炉设备进行现场测试后,可以对模型的充分性和准确性进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the efficiency of fly ash reinjection in grate stoker of boiler
A significant disadvantage of grate stokers is great carbon loss. To reduce these losses, the ash caught in the flue is returned to the furnace for afterburning. The effectiveness of this measure depends on the thermal characteristics of coal, the size of the pieces of coal and ash, the degree of carbon elimination, and the design features of the combustion chamber. Normative techniques to calculate and design grate stokers do not consider the features of coal combustion with ash return. Thus, it is relevant to develop the models that describe the creation of ash flows in the boiler path depending on its design, properties and dispersed composition of the burned coal and the aerodynamics of the combustion chamber. Mathematic simulation of the processes of particle size classification has been carried out to describe the creation of ash mass flows on the grate and in the convection chamber. To evaluate the parameters of mathematical models, simulation modeling of gas dynamics of flue gases in the combustion chamber has been carried out with SolidWorks software. The authors have developed a mathematical model and the method to identify its parameters. It allows us to obtain quantitative estimates of the economic efficiency of boilers with grate firing of coal. Thus, a computer program has been developed. The authors have used the program and the Neryungri brown coal to burn in the KV-TS-30-150 boiler. The results have shown that carbon loss without fly ash reinjection is 11,27 %. Introduction of fly-coke return unit reduces the loss up to 10,45 %. It is established that elimination of slit windows in the rotary baffle will lead to a change of the trajectories of ash particles and carbon losses reduction up to 10,17 %. Limiting the maximum size of coal pieces to 50 mm will lead to a more noticeable increase of boiler efficiency. The calculations have showed that in case the value of the carbon burn out factor equals 0,935, the carbon loss when the system of fly ash reinjection is turned off, its commissioning and, in addition, an increase of the gas density of the rotary screen will be 4 ,88%, 4,44% and 4,3% respectively. In case of a more careful assessment of the burnout factor at the level of 0,9, the carbon loss will be 7,51%, 6,87% and 6,65% respectively. The developed mathematical model makes it possible to evaluate the effect of the operation of the fly ash reinjection unit on the efficiency of the operation of a boiler with a grate stoker. Validation of a model for adequacy and for accuracy increase can be carried out after field testing of the boiler equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of chemical composition of biomass on agglomeration process in fluidized bed of boiler E-75-3,9-440 DFT Synthesis of a robust control system for a manipulation robot with polynomial controllers based on Gramian method Application of submodeling technique to reduce time spent modeling remote magnetic field sensors Solution of inverse heat transfer problem in condenser of a turbine unit with built-in heating unit Increasing energy efficiency of gas piston TPP through integrated use of thermal secondary energy resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1