速度伺服机构的归一化梯度下降PI控制器

Bojan Derajić, I. Krcmar, P. Maric, P. Matić, D. Marčetić
{"title":"速度伺服机构的归一化梯度下降PI控制器","authors":"Bojan Derajić, I. Krcmar, P. Maric, P. Matić, D. Marčetić","doi":"10.1109/INFOTEH53737.2022.9751336","DOIUrl":null,"url":null,"abstract":"Performance of digitally controlled speed servomechanisms is very important for the overall performance of modern motion control systems. Proportional and integral controller is simple, yet with clear physical interpretation. This controller, even when optimally tuned, due to fixed values of parameters might lead to a poor performance of the overall system. One way to resolve this problem is to use gradient descent optimisation of controller parameters, with simple update rules for a real time operation, and with intuitive graphical interpretation. However, gradient descent algorithms have slow convergence and decreased performance when operate in nonstationary and/or nonlinear environment. Learning rate normalisation gives time varying learning rate and minimised a posterior output error. Due to these facts, normalised gradient descent proportional and integral controller for digitally controlled speed servomechanism is presented in this paper. The recommended values of the algorithm parameters, based on convergence analysis, are proposed. Results of the experiments support the analysis.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Normalised Gradient Descent PI Controller For Speed Servomechanism\",\"authors\":\"Bojan Derajić, I. Krcmar, P. Maric, P. Matić, D. Marčetić\",\"doi\":\"10.1109/INFOTEH53737.2022.9751336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of digitally controlled speed servomechanisms is very important for the overall performance of modern motion control systems. Proportional and integral controller is simple, yet with clear physical interpretation. This controller, even when optimally tuned, due to fixed values of parameters might lead to a poor performance of the overall system. One way to resolve this problem is to use gradient descent optimisation of controller parameters, with simple update rules for a real time operation, and with intuitive graphical interpretation. However, gradient descent algorithms have slow convergence and decreased performance when operate in nonstationary and/or nonlinear environment. Learning rate normalisation gives time varying learning rate and minimised a posterior output error. Due to these facts, normalised gradient descent proportional and integral controller for digitally controlled speed servomechanism is presented in this paper. The recommended values of the algorithm parameters, based on convergence analysis, are proposed. Results of the experiments support the analysis.\",\"PeriodicalId\":6839,\"journal\":{\"name\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"50 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH53737.2022.9751336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字控制速度伺服机构的性能对现代运动控制系统的整体性能至关重要。比例和积分控制器是简单的,但有明确的物理解释。由于固定的参数值,该控制器即使经过最佳调优,也可能导致整个系统的性能较差。解决这个问题的一种方法是使用控制器参数的梯度下降优化,对实时操作使用简单的更新规则,并使用直观的图形解释。然而,梯度下降算法在非平稳和/或非线性环境下运行时收敛速度慢,性能下降。学习率归一化给出了时变学习率和最小化后验输出误差。有鉴于此,本文提出了一种用于数字速度伺服机构的归一化梯度下降比例积分控制器。在收敛性分析的基础上,提出了算法参数的推荐值。实验结果支持了这一分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Normalised Gradient Descent PI Controller For Speed Servomechanism
Performance of digitally controlled speed servomechanisms is very important for the overall performance of modern motion control systems. Proportional and integral controller is simple, yet with clear physical interpretation. This controller, even when optimally tuned, due to fixed values of parameters might lead to a poor performance of the overall system. One way to resolve this problem is to use gradient descent optimisation of controller parameters, with simple update rules for a real time operation, and with intuitive graphical interpretation. However, gradient descent algorithms have slow convergence and decreased performance when operate in nonstationary and/or nonlinear environment. Learning rate normalisation gives time varying learning rate and minimised a posterior output error. Due to these facts, normalised gradient descent proportional and integral controller for digitally controlled speed servomechanism is presented in this paper. The recommended values of the algorithm parameters, based on convergence analysis, are proposed. Results of the experiments support the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system site selection using PVGIS and Fuzzy AHP Face Mask Detection Based on Machine Learning and Edge Computing Smart Production Systems: Methods and Application Analyzing the Effects of Abnormal Resonance Voltages using Artificial Neural Networks Real-Time Data Processing Techniques for a Scalable Spatial and Temporal Dimension Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1