心力衰竭导致小鼠长期肥胖和心脏肥厚

IF 5.3 2区 医学 Q1 PHYSIOLOGY Physiology Pub Date : 2023-05-01 DOI:10.1152/physiol.2023.38.s1.5733420
Jamal M. Alzahrani, Bryce J Gambino, C. Delgado, Michael T. Rua, Iris Young, Kevin J. Cusack, T. Clanton
{"title":"心力衰竭导致小鼠长期肥胖和心脏肥厚","authors":"Jamal M. Alzahrani, Bryce J Gambino, C. Delgado, Michael T. Rua, Iris Young, Kevin J. Cusack, T. Clanton","doi":"10.1152/physiol.2023.38.s1.5733420","DOIUrl":null,"url":null,"abstract":"Exertional heat stroke (EHS) is a life-threatening illness that can lead to short- and long-term adverse health outcomes. Several human epidemiology studies have shown that heat stroke exposure is highly associated with the development of cardiovascular disease later in life. However, whether EHS causes heart disease or individuals with predispositions to heart disease are more susceptible to EHS is unknown. Previously, our laboratory demonstrated metabolic abnormalities in the myocardium of mice, two weeks after EHS, characterized by lipid accumulation. In this study, we hypothesized that EHS exposure in mice leads to long-term susceptibilities to cardiovascular disease that is accelerated by co-exposure to a Western diet. METHODS: Sixty-four male (n=32) and female (n=32) C57BL/6 mice were exposed to either EHS (forced wheel running in 34.5°C for males and 37.5°C for females) or sham exercise controls (EXC, forced wheel running in ~22.5°C). Fourteen days later, mice were placed on either a Western diet (WD) or a standard diet (SD) and then followed for 9 additional weeks. At week 12, post interventions (EHS or EXC), animals were euthanized and samples collected for analysis. RESULTS: Male mice exposed to EHS with either WD ( P = 0.0001) or SD ( P = 0.0001) gained more body mass over the 9-week diet period compared to diet matched EXC controls. Also, regardless of diet, male mice exposed to EHS consumed more food compared to matched EXC (WD: P < 0.005 and SD: P < 0.04). However, only female mice exposed to EHS with WD gained more body mass compared to female EXC mice with WD ( P < 0.04). At the end of the study, and regardless of diet, male mice exposed to EHS showed enlarged hearts in terms of absolute mass (WD: P=0.0241, SD: P=0.0069) and relative mass/tibia length (WD: P=0.013, SD P=0.03). On the other hand, EHS female mice exposed to WD showed enlarged heart mass compared to EHS on SD ( P=0.0005). CONCLUSIONS: These results demonstrate that EHS exposure in mice leads to a long-term metabolic disorder characterized by greatly accelerated weight gain, greater appetite and cardiac hypertrophy. Effects were more evident and consistent in males. Such a response is typical of early stages of metabolic syndrome and would likely contribute to eventual cardiac disease. Therefore, the data is consistent with EHS exposure being a risk factor for long term heart disease. U.S. Army Grant BA180078 and from King Saud University, Saudi Arabia This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"16 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exertional heart stroke causes long-term obesity and cardiac hypertrophy in mice\",\"authors\":\"Jamal M. Alzahrani, Bryce J Gambino, C. Delgado, Michael T. Rua, Iris Young, Kevin J. Cusack, T. Clanton\",\"doi\":\"10.1152/physiol.2023.38.s1.5733420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exertional heat stroke (EHS) is a life-threatening illness that can lead to short- and long-term adverse health outcomes. Several human epidemiology studies have shown that heat stroke exposure is highly associated with the development of cardiovascular disease later in life. However, whether EHS causes heart disease or individuals with predispositions to heart disease are more susceptible to EHS is unknown. Previously, our laboratory demonstrated metabolic abnormalities in the myocardium of mice, two weeks after EHS, characterized by lipid accumulation. In this study, we hypothesized that EHS exposure in mice leads to long-term susceptibilities to cardiovascular disease that is accelerated by co-exposure to a Western diet. METHODS: Sixty-four male (n=32) and female (n=32) C57BL/6 mice were exposed to either EHS (forced wheel running in 34.5°C for males and 37.5°C for females) or sham exercise controls (EXC, forced wheel running in ~22.5°C). Fourteen days later, mice were placed on either a Western diet (WD) or a standard diet (SD) and then followed for 9 additional weeks. At week 12, post interventions (EHS or EXC), animals were euthanized and samples collected for analysis. RESULTS: Male mice exposed to EHS with either WD ( P = 0.0001) or SD ( P = 0.0001) gained more body mass over the 9-week diet period compared to diet matched EXC controls. Also, regardless of diet, male mice exposed to EHS consumed more food compared to matched EXC (WD: P < 0.005 and SD: P < 0.04). However, only female mice exposed to EHS with WD gained more body mass compared to female EXC mice with WD ( P < 0.04). At the end of the study, and regardless of diet, male mice exposed to EHS showed enlarged hearts in terms of absolute mass (WD: P=0.0241, SD: P=0.0069) and relative mass/tibia length (WD: P=0.013, SD P=0.03). On the other hand, EHS female mice exposed to WD showed enlarged heart mass compared to EHS on SD ( P=0.0005). CONCLUSIONS: These results demonstrate that EHS exposure in mice leads to a long-term metabolic disorder characterized by greatly accelerated weight gain, greater appetite and cardiac hypertrophy. Effects were more evident and consistent in males. Such a response is typical of early stages of metabolic syndrome and would likely contribute to eventual cardiac disease. Therefore, the data is consistent with EHS exposure being a risk factor for long term heart disease. U.S. Army Grant BA180078 and from King Saud University, Saudi Arabia This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.\",\"PeriodicalId\":49694,\"journal\":{\"name\":\"Physiology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physiol.2023.38.s1.5733420\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.2023.38.s1.5733420","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

劳累性中暑(EHS)是一种危及生命的疾病,可导致短期和长期的不良健康结果。几项人类流行病学研究表明,中暑暴露与生命后期心血管疾病的发展高度相关。然而,究竟是EHS导致心脏病,还是有心脏病易感性的人更容易患EHS,目前尚不清楚。在此之前,我们的实验室证实了EHS后两周小鼠心肌代谢异常,其特征是脂质积累。在这项研究中,我们假设小鼠暴露于EHS会导致心血管疾病的长期易感性,这一易感性会因共同暴露于西方饮食而加速。方法:64只雄性(n=32)和雌性(n=32) C57BL/6小鼠暴露于EHS(雄性34.5°C,雌性37.5°C)或假运动对照组(EXC, ~22.5°C)。14天后,小鼠分别饲喂西式饮食(WD)和标准饮食(SD),然后再进行9周的随访。干预后第12周(EHS或EXC),对动物实施安乐死并收集样本进行分析。结果:与饮食匹配的EXC对照组相比,暴露于EHS伴WD (P = 0.0001)或SD (P = 0.0001)的雄性小鼠在9周的饮食期间增加了更多的体重。此外,无论饮食如何,暴露于EHS的雄性小鼠比匹配的EXC消耗更多的食物(WD: P < 0.005, SD: P < 0.04)。然而,只有暴露于EHS合并WD的雌性小鼠比暴露于WD的雌性EXC小鼠体重增加(P < 0.04)。在研究结束时,无论饮食如何,暴露于EHS的雄性小鼠在绝对质量(WD: P=0.0241, SD: P=0.0069)和相对质量/胫骨长度(WD: P=0.013, SD P=0.03)方面均表现出心脏增大。另一方面,与SD组EHS相比,WD组EHS雌性小鼠心脏质量增大(P=0.0005)。结论:这些结果表明,EHS暴露会导致小鼠长期代谢紊乱,其特征是体重急剧增加、食欲增加和心脏肥厚。对男性的影响更为明显和一致。这种反应是代谢综合征早期阶段的典型反应,很可能导致最终的心脏病。因此,这些数据与EHS暴露是长期心脏病的危险因素相一致。这是在2023年美国生理学峰会上发表的完整摘要,仅以HTML格式提供。此摘要没有附加版本或附加内容。生理学没有参与同行评议过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exertional heart stroke causes long-term obesity and cardiac hypertrophy in mice
Exertional heat stroke (EHS) is a life-threatening illness that can lead to short- and long-term adverse health outcomes. Several human epidemiology studies have shown that heat stroke exposure is highly associated with the development of cardiovascular disease later in life. However, whether EHS causes heart disease or individuals with predispositions to heart disease are more susceptible to EHS is unknown. Previously, our laboratory demonstrated metabolic abnormalities in the myocardium of mice, two weeks after EHS, characterized by lipid accumulation. In this study, we hypothesized that EHS exposure in mice leads to long-term susceptibilities to cardiovascular disease that is accelerated by co-exposure to a Western diet. METHODS: Sixty-four male (n=32) and female (n=32) C57BL/6 mice were exposed to either EHS (forced wheel running in 34.5°C for males and 37.5°C for females) or sham exercise controls (EXC, forced wheel running in ~22.5°C). Fourteen days later, mice were placed on either a Western diet (WD) or a standard diet (SD) and then followed for 9 additional weeks. At week 12, post interventions (EHS or EXC), animals were euthanized and samples collected for analysis. RESULTS: Male mice exposed to EHS with either WD ( P = 0.0001) or SD ( P = 0.0001) gained more body mass over the 9-week diet period compared to diet matched EXC controls. Also, regardless of diet, male mice exposed to EHS consumed more food compared to matched EXC (WD: P < 0.005 and SD: P < 0.04). However, only female mice exposed to EHS with WD gained more body mass compared to female EXC mice with WD ( P < 0.04). At the end of the study, and regardless of diet, male mice exposed to EHS showed enlarged hearts in terms of absolute mass (WD: P=0.0241, SD: P=0.0069) and relative mass/tibia length (WD: P=0.013, SD P=0.03). On the other hand, EHS female mice exposed to WD showed enlarged heart mass compared to EHS on SD ( P=0.0005). CONCLUSIONS: These results demonstrate that EHS exposure in mice leads to a long-term metabolic disorder characterized by greatly accelerated weight gain, greater appetite and cardiac hypertrophy. Effects were more evident and consistent in males. Such a response is typical of early stages of metabolic syndrome and would likely contribute to eventual cardiac disease. Therefore, the data is consistent with EHS exposure being a risk factor for long term heart disease. U.S. Army Grant BA180078 and from King Saud University, Saudi Arabia This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
期刊最新文献
Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Buoyancy Regulation in Insects. Microtubule Reorganization and Quiescence: an Intertwined Relationship. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Olfactory Development and Dysfunction: Involvement of Microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1