Jerome Nango, J. N. Alico, S. Ouattara, A. Clément
{"title":"基于血涂片显微彩色图像的红细胞形态学和比色识别诊断贫血的新策略","authors":"Jerome Nango, J. N. Alico, S. Ouattara, A. Clément","doi":"10.14569/ijacsa.2020.0110762","DOIUrl":null,"url":null,"abstract":"The detection of red blood cells based on morphology and colorimetric appearance is very important in improving hematology diagnostics. There are automatons capable of detecting certain forms, but these have limitations with regard to the formal identification of red blood cells because they consider certain cells to be red blood cells when they are not and vice versa. Other automata have limitations in their operation because they do not cover a sufficient area of the blood smear. In spite of their performance, biologists have very often resorted to the manual analysis of blood smears under an optical microscope for a morphological and colorimetric study. In this paper, we present a new strategy for semi-automatic identification of red blood cells based on their isolation, their automatic color segmentation using Otsu's algorithm and their morphology. The algorithms of our method have been implemented in the programming environment of the scientific software MATLAB resulting in an artificial intelligence application. The application, once launched, allows the biologist to select a region of interest containing the erythrocyte to be characterized, then a set of attributes are computed extracted from this target red blood cell. These attributes include compactness, perimeter, area, morphology, white and red proportions of the erythrocyte, etc. The types of anemia treated in this work concern the iron-deficiency, sickle-cell or falciform, thalassemia, hemolytic, etc. forms. The results obtained are excellent because they highlight different forms of anemia contracted in a patient.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"269 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Strategy for the Morphological and Colorimetric Recognition of Erythrocytes for the Diagnosis of Forms of Anemia based on Microscopic Color Images of Blood Smears\",\"authors\":\"Jerome Nango, J. N. Alico, S. Ouattara, A. Clément\",\"doi\":\"10.14569/ijacsa.2020.0110762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of red blood cells based on morphology and colorimetric appearance is very important in improving hematology diagnostics. There are automatons capable of detecting certain forms, but these have limitations with regard to the formal identification of red blood cells because they consider certain cells to be red blood cells when they are not and vice versa. Other automata have limitations in their operation because they do not cover a sufficient area of the blood smear. In spite of their performance, biologists have very often resorted to the manual analysis of blood smears under an optical microscope for a morphological and colorimetric study. In this paper, we present a new strategy for semi-automatic identification of red blood cells based on their isolation, their automatic color segmentation using Otsu's algorithm and their morphology. The algorithms of our method have been implemented in the programming environment of the scientific software MATLAB resulting in an artificial intelligence application. The application, once launched, allows the biologist to select a region of interest containing the erythrocyte to be characterized, then a set of attributes are computed extracted from this target red blood cell. These attributes include compactness, perimeter, area, morphology, white and red proportions of the erythrocyte, etc. The types of anemia treated in this work concern the iron-deficiency, sickle-cell or falciform, thalassemia, hemolytic, etc. forms. The results obtained are excellent because they highlight different forms of anemia contracted in a patient.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"269 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2020.0110762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2020.0110762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A New Strategy for the Morphological and Colorimetric Recognition of Erythrocytes for the Diagnosis of Forms of Anemia based on Microscopic Color Images of Blood Smears
The detection of red blood cells based on morphology and colorimetric appearance is very important in improving hematology diagnostics. There are automatons capable of detecting certain forms, but these have limitations with regard to the formal identification of red blood cells because they consider certain cells to be red blood cells when they are not and vice versa. Other automata have limitations in their operation because they do not cover a sufficient area of the blood smear. In spite of their performance, biologists have very often resorted to the manual analysis of blood smears under an optical microscope for a morphological and colorimetric study. In this paper, we present a new strategy for semi-automatic identification of red blood cells based on their isolation, their automatic color segmentation using Otsu's algorithm and their morphology. The algorithms of our method have been implemented in the programming environment of the scientific software MATLAB resulting in an artificial intelligence application. The application, once launched, allows the biologist to select a region of interest containing the erythrocyte to be characterized, then a set of attributes are computed extracted from this target red blood cell. These attributes include compactness, perimeter, area, morphology, white and red proportions of the erythrocyte, etc. The types of anemia treated in this work concern the iron-deficiency, sickle-cell or falciform, thalassemia, hemolytic, etc. forms. The results obtained are excellent because they highlight different forms of anemia contracted in a patient.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications