利用混合遗传算法设计海底处理系统

Leonardo Sales, J. Jäschke, M. Stanko
{"title":"利用混合遗传算法设计海底处理系统","authors":"Leonardo Sales, J. Jäschke, M. Stanko","doi":"10.1115/omae2022-78647","DOIUrl":null,"url":null,"abstract":"\n Designing a subsea production system is a task that takes several months to complete by an experienced and multidisciplinary team of engineers. In this work, a computerized hybrid method to find optimal designs and support subsea production system design using a genetic algorithm combined with a gradient search method is proposed.\n The genetic algorithm is formulated to optimize the structure of the production system, while the gradient method solves the continuous non-linear variables related to flow rates, reservoir deliverability, equipment capacities, and others. The study case is based on the Goliat field. This hybrid approach is compared with an exact method.\n The hybrid method successfully finds subsea configurations that maximize the net present value in shorter running times when compared to an exact method. The methodology presented provides an advancement toward modelling and automated decision-making in subsea production system design.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Subsea Processing Systems Using a Hybrid Genetic Algorithm\",\"authors\":\"Leonardo Sales, J. Jäschke, M. Stanko\",\"doi\":\"10.1115/omae2022-78647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Designing a subsea production system is a task that takes several months to complete by an experienced and multidisciplinary team of engineers. In this work, a computerized hybrid method to find optimal designs and support subsea production system design using a genetic algorithm combined with a gradient search method is proposed.\\n The genetic algorithm is formulated to optimize the structure of the production system, while the gradient method solves the continuous non-linear variables related to flow rates, reservoir deliverability, equipment capacities, and others. The study case is based on the Goliat field. This hybrid approach is compared with an exact method.\\n The hybrid method successfully finds subsea configurations that maximize the net present value in shorter running times when compared to an exact method. The methodology presented provides an advancement toward modelling and automated decision-making in subsea production system design.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2022-78647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2022-78647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计海底生产系统是一项由经验丰富的多学科工程师团队耗时数月完成的任务。在这项工作中,提出了一种计算机混合方法,利用遗传算法结合梯度搜索方法来寻找最优设计并支持海底生产系统设计。遗传算法用于优化生产系统结构,梯度法用于解决与流量、油藏产能、设备容量等相关的连续非线性变量。研究案例基于Goliat油田。将这种混合方法与一种精确方法进行了比较。与精确的方法相比,混合方法成功地找到了在更短的运行时间内最大化净现值的海底配置。所提出的方法为海底生产系统设计的建模和自动化决策提供了一种进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Subsea Processing Systems Using a Hybrid Genetic Algorithm
Designing a subsea production system is a task that takes several months to complete by an experienced and multidisciplinary team of engineers. In this work, a computerized hybrid method to find optimal designs and support subsea production system design using a genetic algorithm combined with a gradient search method is proposed. The genetic algorithm is formulated to optimize the structure of the production system, while the gradient method solves the continuous non-linear variables related to flow rates, reservoir deliverability, equipment capacities, and others. The study case is based on the Goliat field. This hybrid approach is compared with an exact method. The hybrid method successfully finds subsea configurations that maximize the net present value in shorter running times when compared to an exact method. The methodology presented provides an advancement toward modelling and automated decision-making in subsea production system design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of the Inertial Components in Modal State Covariances Prelude FLNG Free Weathervaning Heading Prediction and Uncertainties, Based on Machine Learning Model Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Wave Impact Dynamic Response of a Generic Self-Elevating Unit in Operation With Hull in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1