S. Akkurt, C. Sındıraç, Tuğçe ÖZMEN EGESOY, E. Ergen
{"title":"可逆固体氧化物燃料电池新型无钴正极材料研究进展","authors":"S. Akkurt, C. Sındıraç, Tuğçe ÖZMEN EGESOY, E. Ergen","doi":"10.55713/jmmm.v33i3.1654","DOIUrl":null,"url":null,"abstract":"The exponential growth in the requirement of fuel cells and batteries leads to increased demand for cobalt due to its common use in high-performance Li-ion batteries and high-temperature fuel cells/electrolyzers. This sharp increment in demand raises concern about the availability of limited reserves of cobalt which can impact the price of cobalt. Moreover, the geographic limitations of cobalt resources may endanger the whole supply chain. In addition to all those, huge moral issues of cobalt mining are also another problem. Hence, leading battery, fuel cells and electrolyzer manufacturers are looking for sustainable alternatives to reduce cobalt dependency. A more specific limitation is shown in Solid Oxide Fuel Cells (SOFCs) cathode materials that contain cobalt. Incompatibilities have already been observed between the cathode materials containing cobalt and the electrolytes in terms of the thermal expansion coefficient mismatch during the transition of the operating temperature from high to low. An advantage of low operating temperatures is the reduction of material costs compared to high temperature. Increasing the electrochemical performance of the cell and eliminating thermal expansion coefficient difference problems are in concert aimed at the development of cobalt-free cathode materials. Therefore, cobalt-free cathode materials are vital for the sustainability of SOFCs and green transition of the energy sector since they can be used as cathode and anode material in symmetrical SOFCs which is also known as reversible SOFC (RSOFC). In this review, we comprehensively summarize the recent advances of cobalt-free perovskite cathode materials for intermediate temperature RSOFCs.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"47 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on new cobalt-free cathode materials for reversible solid oxide fuel cells\",\"authors\":\"S. Akkurt, C. Sındıraç, Tuğçe ÖZMEN EGESOY, E. Ergen\",\"doi\":\"10.55713/jmmm.v33i3.1654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential growth in the requirement of fuel cells and batteries leads to increased demand for cobalt due to its common use in high-performance Li-ion batteries and high-temperature fuel cells/electrolyzers. This sharp increment in demand raises concern about the availability of limited reserves of cobalt which can impact the price of cobalt. Moreover, the geographic limitations of cobalt resources may endanger the whole supply chain. In addition to all those, huge moral issues of cobalt mining are also another problem. Hence, leading battery, fuel cells and electrolyzer manufacturers are looking for sustainable alternatives to reduce cobalt dependency. A more specific limitation is shown in Solid Oxide Fuel Cells (SOFCs) cathode materials that contain cobalt. Incompatibilities have already been observed between the cathode materials containing cobalt and the electrolytes in terms of the thermal expansion coefficient mismatch during the transition of the operating temperature from high to low. An advantage of low operating temperatures is the reduction of material costs compared to high temperature. Increasing the electrochemical performance of the cell and eliminating thermal expansion coefficient difference problems are in concert aimed at the development of cobalt-free cathode materials. Therefore, cobalt-free cathode materials are vital for the sustainability of SOFCs and green transition of the energy sector since they can be used as cathode and anode material in symmetrical SOFCs which is also known as reversible SOFC (RSOFC). In this review, we comprehensively summarize the recent advances of cobalt-free perovskite cathode materials for intermediate temperature RSOFCs.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i3.1654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i3.1654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A review on new cobalt-free cathode materials for reversible solid oxide fuel cells
The exponential growth in the requirement of fuel cells and batteries leads to increased demand for cobalt due to its common use in high-performance Li-ion batteries and high-temperature fuel cells/electrolyzers. This sharp increment in demand raises concern about the availability of limited reserves of cobalt which can impact the price of cobalt. Moreover, the geographic limitations of cobalt resources may endanger the whole supply chain. In addition to all those, huge moral issues of cobalt mining are also another problem. Hence, leading battery, fuel cells and electrolyzer manufacturers are looking for sustainable alternatives to reduce cobalt dependency. A more specific limitation is shown in Solid Oxide Fuel Cells (SOFCs) cathode materials that contain cobalt. Incompatibilities have already been observed between the cathode materials containing cobalt and the electrolytes in terms of the thermal expansion coefficient mismatch during the transition of the operating temperature from high to low. An advantage of low operating temperatures is the reduction of material costs compared to high temperature. Increasing the electrochemical performance of the cell and eliminating thermal expansion coefficient difference problems are in concert aimed at the development of cobalt-free cathode materials. Therefore, cobalt-free cathode materials are vital for the sustainability of SOFCs and green transition of the energy sector since they can be used as cathode and anode material in symmetrical SOFCs which is also known as reversible SOFC (RSOFC). In this review, we comprehensively summarize the recent advances of cobalt-free perovskite cathode materials for intermediate temperature RSOFCs.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.