{"title":"在SUNDIALS非线性和微分/代数方程求解器套件中实现新的灵活性","authors":"D. J. Gardner, D. Reynolds, C. Woodward, C. Balos","doi":"10.1145/3539801","DOIUrl":null,"url":null,"abstract":"In recent years, the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) has been redesigned to better enable the use of application-specific and third-party algebraic solvers and data structures. Throughout this work, we have adhered to specific guiding principles that minimized the impact to current users while providing maximum flexibility for later evolution of solvers and data structures. The redesign was done through the addition of new linear and nonlinear solvers classes, enhancements to the vector class, and the creation of modern Fortran interfaces. The vast majority of this work has been performed “behind-the-scenes,” with minimal changes to the user interface and no reduction in solver capabilities or performance. These changes allow SUNDIALS users to more easily utilize external solver libraries and create highly customized solvers, enabling greater flexibility on extreme-scale, heterogeneous computational architectures.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"1 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1526","resultStr":"{\"title\":\"Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers\",\"authors\":\"D. J. Gardner, D. Reynolds, C. Woodward, C. Balos\",\"doi\":\"10.1145/3539801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) has been redesigned to better enable the use of application-specific and third-party algebraic solvers and data structures. Throughout this work, we have adhered to specific guiding principles that minimized the impact to current users while providing maximum flexibility for later evolution of solvers and data structures. The redesign was done through the addition of new linear and nonlinear solvers classes, enhancements to the vector class, and the creation of modern Fortran interfaces. The vast majority of this work has been performed “behind-the-scenes,” with minimal changes to the user interface and no reduction in solver capabilities or performance. These changes allow SUNDIALS users to more easily utilize external solver libraries and create highly customized solvers, enabling greater flexibility on extreme-scale, heterogeneous computational architectures.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"1 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1526\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers
In recent years, the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) has been redesigned to better enable the use of application-specific and third-party algebraic solvers and data structures. Throughout this work, we have adhered to specific guiding principles that minimized the impact to current users while providing maximum flexibility for later evolution of solvers and data structures. The redesign was done through the addition of new linear and nonlinear solvers classes, enhancements to the vector class, and the creation of modern Fortran interfaces. The vast majority of this work has been performed “behind-the-scenes,” with minimal changes to the user interface and no reduction in solver capabilities or performance. These changes allow SUNDIALS users to more easily utilize external solver libraries and create highly customized solvers, enabling greater flexibility on extreme-scale, heterogeneous computational architectures.