Christian J. Dietrich, Achim Schmider, Oskar Pusz, G. P. Vayá, D. Lohmann
{"title":"硬件辅助故障注入的跨层故障空间剪枝","authors":"Christian J. Dietrich, Achim Schmider, Oskar Pusz, G. P. Vayá, D. Lohmann","doi":"10.1145/3195970.3196019","DOIUrl":null,"url":null,"abstract":"With shrinking structure sizes, soft-error mitigation has become a major challenge in the design and certification of safety-critical embedded systems. Their robustness is quantified by extensive fault-injection campaigns, which on hardware level can nevertheless cover only a tiny part of the fault space.We suggest Fault-Masking Terms (MATEs) to effectively prune the fault space for gate-level fault injection campaigns by using the (software-induced) hardware state to dynamically cut off benign faults. Our tool applied to an AVR core and a size-optimized MSP430 implementation shows that up to 21 percent of all SEUs on flip-flop level are masked within one clock cycle.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"49 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cross-Layer Fault-Space Pruning for Hardware-Assisted Fault Injection\",\"authors\":\"Christian J. Dietrich, Achim Schmider, Oskar Pusz, G. P. Vayá, D. Lohmann\",\"doi\":\"10.1145/3195970.3196019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With shrinking structure sizes, soft-error mitigation has become a major challenge in the design and certification of safety-critical embedded systems. Their robustness is quantified by extensive fault-injection campaigns, which on hardware level can nevertheless cover only a tiny part of the fault space.We suggest Fault-Masking Terms (MATEs) to effectively prune the fault space for gate-level fault injection campaigns by using the (software-induced) hardware state to dynamically cut off benign faults. Our tool applied to an AVR core and a size-optimized MSP430 implementation shows that up to 21 percent of all SEUs on flip-flop level are masked within one clock cycle.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"49 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Layer Fault-Space Pruning for Hardware-Assisted Fault Injection
With shrinking structure sizes, soft-error mitigation has become a major challenge in the design and certification of safety-critical embedded systems. Their robustness is quantified by extensive fault-injection campaigns, which on hardware level can nevertheless cover only a tiny part of the fault space.We suggest Fault-Masking Terms (MATEs) to effectively prune the fault space for gate-level fault injection campaigns by using the (software-induced) hardware state to dynamically cut off benign faults. Our tool applied to an AVR core and a size-optimized MSP430 implementation shows that up to 21 percent of all SEUs on flip-flop level are masked within one clock cycle.