K. Savithri, B. C. V. Kumar, H. K. Vivek, H. D. Revanasiddappa
{"title":"钴(III)和铜(II)配合物2-((E)-(6-氟苯并[d]噻唑-2-ylimino)甲基)-4-氯苯酚的合成和表征:DNA结合和核酸酶研究- sod和抗菌活性","authors":"K. Savithri, B. C. V. Kumar, H. K. Vivek, H. D. Revanasiddappa","doi":"10.1155/2018/8759372","DOIUrl":null,"url":null,"abstract":"A bidentate (N- and O-) imine-based ligand (L1) and its metal complexes of types [ (L1)2] (C1), [ (L1)(Phen)] (C2), [ (L1)2] (C3), and [ (L1)(Phen)] (C4) (L1 = 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol and phen = 1,10-phenanthroline) were synthesized as potential chemotherapeutic drug candidates. The prepared complexes were structurally characterized by spectral techniques (NMR, FT-IR, LC-MS, EPR, and electronic absorption), thermogravimetric analysis (TGA/DTA), magnetic moment, and CHNO elemental analysis. Spectroscopic studies suggested the distorted octahedral structure for all complexes. In vitro bioassay studies include binding and nuclease activities of the ligand and its complexes with target calf thymus- (CT-) DNA were carried out by employing UV-Vis, fluorescence spectroscopy, viscosity, and gel electrophoresis techniques. The extent of binding propensity was determined quantitatively by and values which revealed a higher binding affinity for C2 and C4 as compared to C1 and C3. In addition, the scavenging superoxide anion free radical ( ) activity of metal complexes was determined by nitroblue tetrazolium (NBT) light reduction assay. Molecular docking studies with DNA and SOD enzyme were also carried out on these compounds. The antimicrobial study has shown that all the compounds are potential antibacterial agents against Gram-negative bacterial strains and better antifungal agents with respect to standard drugs used.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"51 1","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Synthesis and Characterization of Cobalt(III) and Copper(II) Complexes of 2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol: DNA Binding and Nuclease Studies—SOD and Antimicrobial Activities\",\"authors\":\"K. Savithri, B. C. V. Kumar, H. K. Vivek, H. D. Revanasiddappa\",\"doi\":\"10.1155/2018/8759372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bidentate (N- and O-) imine-based ligand (L1) and its metal complexes of types [ (L1)2] (C1), [ (L1)(Phen)] (C2), [ (L1)2] (C3), and [ (L1)(Phen)] (C4) (L1 = 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol and phen = 1,10-phenanthroline) were synthesized as potential chemotherapeutic drug candidates. The prepared complexes were structurally characterized by spectral techniques (NMR, FT-IR, LC-MS, EPR, and electronic absorption), thermogravimetric analysis (TGA/DTA), magnetic moment, and CHNO elemental analysis. Spectroscopic studies suggested the distorted octahedral structure for all complexes. In vitro bioassay studies include binding and nuclease activities of the ligand and its complexes with target calf thymus- (CT-) DNA were carried out by employing UV-Vis, fluorescence spectroscopy, viscosity, and gel electrophoresis techniques. The extent of binding propensity was determined quantitatively by and values which revealed a higher binding affinity for C2 and C4 as compared to C1 and C3. In addition, the scavenging superoxide anion free radical ( ) activity of metal complexes was determined by nitroblue tetrazolium (NBT) light reduction assay. Molecular docking studies with DNA and SOD enzyme were also carried out on these compounds. The antimicrobial study has shown that all the compounds are potential antibacterial agents against Gram-negative bacterial strains and better antifungal agents with respect to standard drugs used.\",\"PeriodicalId\":14329,\"journal\":{\"name\":\"International Journal of Spectroscopy\",\"volume\":\"51 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/8759372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8759372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of Cobalt(III) and Copper(II) Complexes of 2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol: DNA Binding and Nuclease Studies—SOD and Antimicrobial Activities
A bidentate (N- and O-) imine-based ligand (L1) and its metal complexes of types [ (L1)2] (C1), [ (L1)(Phen)] (C2), [ (L1)2] (C3), and [ (L1)(Phen)] (C4) (L1 = 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol and phen = 1,10-phenanthroline) were synthesized as potential chemotherapeutic drug candidates. The prepared complexes were structurally characterized by spectral techniques (NMR, FT-IR, LC-MS, EPR, and electronic absorption), thermogravimetric analysis (TGA/DTA), magnetic moment, and CHNO elemental analysis. Spectroscopic studies suggested the distorted octahedral structure for all complexes. In vitro bioassay studies include binding and nuclease activities of the ligand and its complexes with target calf thymus- (CT-) DNA were carried out by employing UV-Vis, fluorescence spectroscopy, viscosity, and gel electrophoresis techniques. The extent of binding propensity was determined quantitatively by and values which revealed a higher binding affinity for C2 and C4 as compared to C1 and C3. In addition, the scavenging superoxide anion free radical ( ) activity of metal complexes was determined by nitroblue tetrazolium (NBT) light reduction assay. Molecular docking studies with DNA and SOD enzyme were also carried out on these compounds. The antimicrobial study has shown that all the compounds are potential antibacterial agents against Gram-negative bacterial strains and better antifungal agents with respect to standard drugs used.