改进了从完整动脉制剂中分析平滑肌钙信号的工作流程

IF 5.3 2区 医学 Q1 PHYSIOLOGY Physiology Pub Date : 2023-05-01 DOI:10.1152/physiol.2023.38.s1.5732992
Madison Boskind, Nikitha Nelapudi, Grace Williamson, Rucha Juarez, Bobby Mendez, Lubo Zhang, A. Blood, Christopher Wilson, S. Wilson
{"title":"改进了从完整动脉制剂中分析平滑肌钙信号的工作流程","authors":"Madison Boskind, Nikitha Nelapudi, Grace Williamson, Rucha Juarez, Bobby Mendez, Lubo Zhang, A. Blood, Christopher Wilson, S. Wilson","doi":"10.1152/physiol.2023.38.s1.5732992","DOIUrl":null,"url":null,"abstract":"Intracellular Ca2+ signals are well regarded for their regulation of cellular processes ranging from myocyte contraction, hormonal secretion, neural transmission, cellular metabolism, transcriptional regulation, and cell proliferation. Measurement of cellular Ca2+ is routinely performed using fluorescent microscopy techniques with biological indicators. Analysis of deterministic signals is relatively straightforward as relevant data can be discriminated based on the timing of cellular responses. However, analysis of stochastic events in complex tissues takes considerable time and effort that often includes visual analysis by trained investigators. The purpose of the current study was to determine if the image analysis workflow could be automated without introducing errors. This evaluation was addressed by re-analyzing a published “gold standard” dataset through visual analysis of Ca2+ signals from recordings made in pulmonary arterial myocytes of en face arterial preparations. We applied a combination of data-driven and statistical approaches with comparisons to our published data to assess the fidelity of the various approaches. Regions of interest with Ca2+ oscillations were detected automatically post-hoc using the LC Pro plug-in for ImageJ. Oscillatory signals were separated based on event durations between 4 and 40 seconds. These data were filtered based on cutoffs obtained from multiple methods and compared to the published manually curated “gold standard” dataset. After filtering, the number of true positives, false positives, and false negatives were calculated through comparisons to the gold standard dataset. Positive predictive value, sensitivity and false discovery rates were calculated. There were very few significant differences between the quality of the events and no systematic biases based on the data curation or filtering techniques. The lack of difference between manual data curation and statistically derived critical cutoff techniques leads us to question the importance of manually curating stochastic Ca2+ event datasets using labor-intensive visual observation techniques. NIH R01HL155295, R01HL149608 This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved workflow for analysis of smooth muscle calcium signals from intact arterial preparations\",\"authors\":\"Madison Boskind, Nikitha Nelapudi, Grace Williamson, Rucha Juarez, Bobby Mendez, Lubo Zhang, A. Blood, Christopher Wilson, S. Wilson\",\"doi\":\"10.1152/physiol.2023.38.s1.5732992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracellular Ca2+ signals are well regarded for their regulation of cellular processes ranging from myocyte contraction, hormonal secretion, neural transmission, cellular metabolism, transcriptional regulation, and cell proliferation. Measurement of cellular Ca2+ is routinely performed using fluorescent microscopy techniques with biological indicators. Analysis of deterministic signals is relatively straightforward as relevant data can be discriminated based on the timing of cellular responses. However, analysis of stochastic events in complex tissues takes considerable time and effort that often includes visual analysis by trained investigators. The purpose of the current study was to determine if the image analysis workflow could be automated without introducing errors. This evaluation was addressed by re-analyzing a published “gold standard” dataset through visual analysis of Ca2+ signals from recordings made in pulmonary arterial myocytes of en face arterial preparations. We applied a combination of data-driven and statistical approaches with comparisons to our published data to assess the fidelity of the various approaches. Regions of interest with Ca2+ oscillations were detected automatically post-hoc using the LC Pro plug-in for ImageJ. Oscillatory signals were separated based on event durations between 4 and 40 seconds. These data were filtered based on cutoffs obtained from multiple methods and compared to the published manually curated “gold standard” dataset. After filtering, the number of true positives, false positives, and false negatives were calculated through comparisons to the gold standard dataset. Positive predictive value, sensitivity and false discovery rates were calculated. There were very few significant differences between the quality of the events and no systematic biases based on the data curation or filtering techniques. The lack of difference between manual data curation and statistically derived critical cutoff techniques leads us to question the importance of manually curating stochastic Ca2+ event datasets using labor-intensive visual observation techniques. NIH R01HL155295, R01HL149608 This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.\",\"PeriodicalId\":49694,\"journal\":{\"name\":\"Physiology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physiol.2023.38.s1.5732992\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.2023.38.s1.5732992","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞内Ca2+信号因其对细胞过程的调节而受到广泛关注,这些细胞过程包括肌细胞收缩、激素分泌、神经传递、细胞代谢、转录调节和细胞增殖。细胞Ca2+的测量是常规使用荧光显微镜技术与生物指标进行。确定性信号的分析相对简单,因为相关数据可以根据细胞反应的时间进行区分。然而,分析复杂组织中的随机事件需要大量的时间和精力,通常包括由训练有素的调查人员进行视觉分析。当前研究的目的是确定图像分析工作流程是否可以在不引入错误的情况下自动化。这一评估是通过重新分析已发表的“金标准”数据集来解决的,该数据集通过对正面动脉制备的肺动脉肌细胞中记录的Ca2+信号进行视觉分析。我们将数据驱动和统计方法相结合,并与已发表的数据进行比较,以评估各种方法的保真度。使用LC Pro插件自动检测具有Ca2+振荡的感兴趣区域。振荡信号根据事件持续时间在4到40秒之间进行分离。这些数据是根据从多种方法获得的截止值进行过滤的,并与已发布的人工管理的“黄金标准”数据集进行比较。过滤后,通过与金标准数据集的比较计算真阳性、假阳性和假阴性的数量。计算阳性预测值、敏感性和错误发现率。事件质量之间几乎没有显著差异,也没有基于数据管理或过滤技术的系统性偏差。手工数据管理和统计导出的临界截止技术之间缺乏差异,这使我们质疑使用劳动密集型视觉观察技术手动管理随机Ca2+事件数据集的重要性。这是在美国生理学峰会2023会议上发表的全文摘要,仅以HTML格式提供。此摘要没有附加版本或附加内容。生理学没有参与同行评议过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved workflow for analysis of smooth muscle calcium signals from intact arterial preparations
Intracellular Ca2+ signals are well regarded for their regulation of cellular processes ranging from myocyte contraction, hormonal secretion, neural transmission, cellular metabolism, transcriptional regulation, and cell proliferation. Measurement of cellular Ca2+ is routinely performed using fluorescent microscopy techniques with biological indicators. Analysis of deterministic signals is relatively straightforward as relevant data can be discriminated based on the timing of cellular responses. However, analysis of stochastic events in complex tissues takes considerable time and effort that often includes visual analysis by trained investigators. The purpose of the current study was to determine if the image analysis workflow could be automated without introducing errors. This evaluation was addressed by re-analyzing a published “gold standard” dataset through visual analysis of Ca2+ signals from recordings made in pulmonary arterial myocytes of en face arterial preparations. We applied a combination of data-driven and statistical approaches with comparisons to our published data to assess the fidelity of the various approaches. Regions of interest with Ca2+ oscillations were detected automatically post-hoc using the LC Pro plug-in for ImageJ. Oscillatory signals were separated based on event durations between 4 and 40 seconds. These data were filtered based on cutoffs obtained from multiple methods and compared to the published manually curated “gold standard” dataset. After filtering, the number of true positives, false positives, and false negatives were calculated through comparisons to the gold standard dataset. Positive predictive value, sensitivity and false discovery rates were calculated. There were very few significant differences between the quality of the events and no systematic biases based on the data curation or filtering techniques. The lack of difference between manual data curation and statistically derived critical cutoff techniques leads us to question the importance of manually curating stochastic Ca2+ event datasets using labor-intensive visual observation techniques. NIH R01HL155295, R01HL149608 This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
期刊最新文献
Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Buoyancy Regulation in Insects. Microtubule Reorganization and Quiescence: an Intertwined Relationship. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Olfactory Development and Dysfunction: Involvement of Microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1