一种状态依赖时间演化的多约束路由算法

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Autonomous and Adaptive Systems Pub Date : 2013-04-01 DOI:10.1145/2451248.2451254
A. Mellouk, S. Hoceini, S. Zeadally
{"title":"一种状态依赖时间演化的多约束路由算法","authors":"A. Mellouk, S. Hoceini, S. Zeadally","doi":"10.1145/2451248.2451254","DOIUrl":null,"url":null,"abstract":"This article proposes a state-dependent routing algorithm based on a global optimization cost function whose parameters are learned from the real-time state of the network with no a priori model. The proposed approach samples, estimates, and builds the model of pertinent and important aspects of the network environment such as type of traffic, QoS policies, resources, etc. It is based on the trial/error paradigm combined with swarm-adaptive approaches. The global system uses a model that combines both a stochastic planned prenavigation for the exploration phase with a deterministic approach for the backward phase. We conducted a performance analysis of the proposed algorithm using OPNET based on several topologies such as the Nippon telephone and telegraph network. The simulation results obtained demonstrate substantial performance improvements over traditional routing approaches as well as the benefits of learning approaches for networks with dynamically changing traffic.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"14 1","pages":"6:1-6:21"},"PeriodicalIF":2.2000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A state-dependent time evolving multi-constraint routing algorithm\",\"authors\":\"A. Mellouk, S. Hoceini, S. Zeadally\",\"doi\":\"10.1145/2451248.2451254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a state-dependent routing algorithm based on a global optimization cost function whose parameters are learned from the real-time state of the network with no a priori model. The proposed approach samples, estimates, and builds the model of pertinent and important aspects of the network environment such as type of traffic, QoS policies, resources, etc. It is based on the trial/error paradigm combined with swarm-adaptive approaches. The global system uses a model that combines both a stochastic planned prenavigation for the exploration phase with a deterministic approach for the backward phase. We conducted a performance analysis of the proposed algorithm using OPNET based on several topologies such as the Nippon telephone and telegraph network. The simulation results obtained demonstrate substantial performance improvements over traditional routing approaches as well as the benefits of learning approaches for networks with dynamically changing traffic.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"14 1\",\"pages\":\"6:1-6:21\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2451248.2451254\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2451248.2451254","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于全局优化代价函数的状态依赖路由算法,该算法的参数从网络的实时状态中学习,没有先验模型。所提出的方法对网络环境的相关和重要方面(如流量类型、QoS策略、资源等)进行采样、估计和构建模型。它是基于试错范式与群体自适应方法的结合。全局系统使用一种模型,该模型结合了勘探阶段的随机计划预导航和逆向阶段的确定性方法。我们使用基于若干拓扑(如Nippon电话和电报网络)的OPNET对所提出的算法进行了性能分析。仿真结果表明,与传统的路由方法相比,该方法的性能有了很大的提高,并且对于流量动态变化的网络,学习方法也有很大的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A state-dependent time evolving multi-constraint routing algorithm
This article proposes a state-dependent routing algorithm based on a global optimization cost function whose parameters are learned from the real-time state of the network with no a priori model. The proposed approach samples, estimates, and builds the model of pertinent and important aspects of the network environment such as type of traffic, QoS policies, resources, etc. It is based on the trial/error paradigm combined with swarm-adaptive approaches. The global system uses a model that combines both a stochastic planned prenavigation for the exploration phase with a deterministic approach for the backward phase. We conducted a performance analysis of the proposed algorithm using OPNET based on several topologies such as the Nippon telephone and telegraph network. The simulation results obtained demonstrate substantial performance improvements over traditional routing approaches as well as the benefits of learning approaches for networks with dynamically changing traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems 工程技术-计算机:理论方法
CiteScore
4.80
自引率
7.40%
发文量
9
审稿时长
>12 weeks
期刊介绍: TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.
期刊最新文献
IBAQ: Frequency-Domain Backdoor Attack Threatening Autonomous Driving via Quadratic Phase Adaptive Scheduling of High-Availability Drone Swarms for Congestion Alleviation in Connected Automated Vehicles Self-Supervised Machine Learning Framework for Online Container Security Attack Detection A Framework for Simultaneous Task Allocation and Planning under Uncertainty Adaptation in Edge Computing: A review on design principles and research challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1