{"title":"相容性聚乳酸/醋酸乙烯共混物的热、力学、流变和形态性能","authors":"M. Johar, K. Z. Zarkasi, F. Hashim, A. Rusli","doi":"10.1177/14777606221085988","DOIUrl":null,"url":null,"abstract":"This paper examines the effects of poly (ethylene-co-vinyl acetate) (EVA) with 40% vinyl acetate content on thermal, mechanical, rheological, and morphological properties of polylactic acid (PLA) blends. Thermal analysis indicated improvement of crystallinity in the presence of more EVA. With 15% EVA, the impact strength of the binary blend increased significantly (37.80 KJ/m2) at an optimum elongation at break due to the compatibility of the blend and the formation of fibrils. In the presence of % EVA, complete phase separation with the formation of EVA droplets in the PLA continuous phase resulted in a reduction of impact strength and elongation at break. Changes in compatibility and morphology lead to variation in rheological properties. The complex viscosity (η*) decreased with increasing EVA content up to 10% EVA but slightly increased at 15% EVA due to optimum interphase interaction between components in the compatible blend. In the presence of more than 20% EVA, η* reduced again due to the occurrence of phase separation. The variations in the mechanical and rheological properties of PLA/EVA blends are directly related to the state of compatibility and morphology of the blends.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"15 1","pages":"172 - 187"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermal, mechanical, rheological and morphological properties of compatible poly(lactic acid)/ethylene vinyl acetate blends\",\"authors\":\"M. Johar, K. Z. Zarkasi, F. Hashim, A. Rusli\",\"doi\":\"10.1177/14777606221085988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the effects of poly (ethylene-co-vinyl acetate) (EVA) with 40% vinyl acetate content on thermal, mechanical, rheological, and morphological properties of polylactic acid (PLA) blends. Thermal analysis indicated improvement of crystallinity in the presence of more EVA. With 15% EVA, the impact strength of the binary blend increased significantly (37.80 KJ/m2) at an optimum elongation at break due to the compatibility of the blend and the formation of fibrils. In the presence of % EVA, complete phase separation with the formation of EVA droplets in the PLA continuous phase resulted in a reduction of impact strength and elongation at break. Changes in compatibility and morphology lead to variation in rheological properties. The complex viscosity (η*) decreased with increasing EVA content up to 10% EVA but slightly increased at 15% EVA due to optimum interphase interaction between components in the compatible blend. In the presence of more than 20% EVA, η* reduced again due to the occurrence of phase separation. The variations in the mechanical and rheological properties of PLA/EVA blends are directly related to the state of compatibility and morphology of the blends.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"15 1\",\"pages\":\"172 - 187\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606221085988\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606221085988","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Thermal, mechanical, rheological and morphological properties of compatible poly(lactic acid)/ethylene vinyl acetate blends
This paper examines the effects of poly (ethylene-co-vinyl acetate) (EVA) with 40% vinyl acetate content on thermal, mechanical, rheological, and morphological properties of polylactic acid (PLA) blends. Thermal analysis indicated improvement of crystallinity in the presence of more EVA. With 15% EVA, the impact strength of the binary blend increased significantly (37.80 KJ/m2) at an optimum elongation at break due to the compatibility of the blend and the formation of fibrils. In the presence of % EVA, complete phase separation with the formation of EVA droplets in the PLA continuous phase resulted in a reduction of impact strength and elongation at break. Changes in compatibility and morphology lead to variation in rheological properties. The complex viscosity (η*) decreased with increasing EVA content up to 10% EVA but slightly increased at 15% EVA due to optimum interphase interaction between components in the compatible blend. In the presence of more than 20% EVA, η* reduced again due to the occurrence of phase separation. The variations in the mechanical and rheological properties of PLA/EVA blends are directly related to the state of compatibility and morphology of the blends.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.