Shehu S. Abdussalam, F. Agocs, B. Allanach, P. Athron, Csaba Bal'azs, E. Bagnaschi, P. Bechtle, O. Buchmueller, A. Beniwal, J. Bhom, Sanjay Bloor, T. Bringmann, Andy Buckley, A. Butter, J. E. Camargo-Molina, M. Chrzaszcz, Janice Conrad, Jonathan M. Cornell, M. Danninger, J. Blas, A. Roeck, K. Desch, M. Dolan, H. Dreiner, O. Eberhardt, J. Ellis, Ben Farmer, M. Fedele, H. Flacher, A. Fowlie, T. Gonzalo, Philip Grace, M. Hamer, Will Handley, J. Harz, S. Heinemeyer, S. Hoof, Selim Hotinli, Paul Jackson, F. Kahlhoefer, K. Kowalska, M. Kramer, A. Kvellestad, Miriam Lucio Martínez, F. Mahmoudi, D. M. Santos, G. Martinez, S. Mishima, K. Olive, A. Paul, M. Prim, W. Porod, A. Raklev, Janina J. Renk, C. Rogan, L. Roszkowski, R. R. Austri, Kazuki Sakurai, A. Scaffidi, P. Scott, E. M. Sessolo, T. Stefaniak, Patrick Stöcker, W. Su, S. Trojanowski, R. Trotta, Y. S. Tsai, J. V. D. Abeele, M. Valli, A. Vincent, G. Weiglein, Martin White, P. Wienemann, L. Wu, Yang Zhang
{"title":"简单和统计合理的建议,分析物理理论","authors":"Shehu S. Abdussalam, F. Agocs, B. Allanach, P. Athron, Csaba Bal'azs, E. Bagnaschi, P. Bechtle, O. Buchmueller, A. Beniwal, J. Bhom, Sanjay Bloor, T. Bringmann, Andy Buckley, A. Butter, J. E. Camargo-Molina, M. Chrzaszcz, Janice Conrad, Jonathan M. Cornell, M. Danninger, J. Blas, A. Roeck, K. Desch, M. Dolan, H. Dreiner, O. Eberhardt, J. Ellis, Ben Farmer, M. Fedele, H. Flacher, A. Fowlie, T. Gonzalo, Philip Grace, M. Hamer, Will Handley, J. Harz, S. Heinemeyer, S. Hoof, Selim Hotinli, Paul Jackson, F. Kahlhoefer, K. Kowalska, M. Kramer, A. Kvellestad, Miriam Lucio Martínez, F. Mahmoudi, D. M. Santos, G. Martinez, S. Mishima, K. Olive, A. Paul, M. Prim, W. Porod, A. Raklev, Janina J. Renk, C. Rogan, L. Roszkowski, R. R. Austri, Kazuki Sakurai, A. Scaffidi, P. Scott, E. M. Sessolo, T. Stefaniak, Patrick Stöcker, W. Su, S. Trojanowski, R. Trotta, Y. S. Tsai, J. V. D. Abeele, M. Valli, A. Vincent, G. Weiglein, Martin White, P. Wienemann, L. Wu, Yang Zhang","doi":"10.1088/1361-6633/ac60ac","DOIUrl":null,"url":null,"abstract":"Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"55 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Simple and statistically sound recommendations for analysing physical theories\",\"authors\":\"Shehu S. Abdussalam, F. Agocs, B. Allanach, P. Athron, Csaba Bal'azs, E. Bagnaschi, P. Bechtle, O. Buchmueller, A. Beniwal, J. Bhom, Sanjay Bloor, T. Bringmann, Andy Buckley, A. Butter, J. E. Camargo-Molina, M. Chrzaszcz, Janice Conrad, Jonathan M. Cornell, M. Danninger, J. Blas, A. Roeck, K. Desch, M. Dolan, H. Dreiner, O. Eberhardt, J. Ellis, Ben Farmer, M. Fedele, H. Flacher, A. Fowlie, T. Gonzalo, Philip Grace, M. Hamer, Will Handley, J. Harz, S. Heinemeyer, S. Hoof, Selim Hotinli, Paul Jackson, F. Kahlhoefer, K. Kowalska, M. Kramer, A. Kvellestad, Miriam Lucio Martínez, F. Mahmoudi, D. M. Santos, G. Martinez, S. Mishima, K. Olive, A. Paul, M. Prim, W. Porod, A. Raklev, Janina J. Renk, C. Rogan, L. Roszkowski, R. R. Austri, Kazuki Sakurai, A. Scaffidi, P. Scott, E. M. Sessolo, T. Stefaniak, Patrick Stöcker, W. Su, S. Trojanowski, R. Trotta, Y. S. Tsai, J. V. D. Abeele, M. Valli, A. Vincent, G. Weiglein, Martin White, P. Wienemann, L. Wu, Yang Zhang\",\"doi\":\"10.1088/1361-6633/ac60ac\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ac60ac\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ac60ac","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Simple and statistically sound recommendations for analysing physical theories
Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.