{"title":"提高梯形太阳能池的能源效率:利用东西反射镜和煤渣的协同方法-能源分析研究","authors":"Vinoth Kumar Jayakumar, Amarkarthik Arunachalam","doi":"10.1177/09576509231197035","DOIUrl":null,"url":null,"abstract":"The realm of sustainable energy systems has seen the salt gradient solar pond (SGSP) emerge as an eco-friendly solution for thermal energy storage. This research explores the use of an East-West (EW) reflector and coal cinder additive (CC) to enhance the energy efficiency of the inner zones of a salt gradient trapezoidal solar pond (SGTSP). In this work, SGTSP with EW and CC systems were designed, fabricated, and analyzed based on an energy point of view and compared with standard SGTSP systems. It also provides a shading area analysis based on the slant angle of the SGSP system, offering valuable insights into the system’s performance for low-grade heat source thermal applications. The study found that the EW reflector significantly increased the average solar intensity by 33.2%. The addition of coal cinder additive raised the average temperature of the lower convection zone by 24.1%. The SGTSP with EW reflector and coal cinder (SGTSP-EWR&CC) reached a maximum average temperature of 83.85°C, with a 42% higher energy efficiency in the lower convection zone compared to the conventional SGTSP (SGTSP-C). Further, the SGTSP’s potential for thermal energy storage and providing practical strategies for enhancing its energy efficiency is showcased.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":"76 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing energy efficiency in trapezoidal solar ponds: A synergistic approach utilizing east-west reflector and coal cinder – An energy analysis study\",\"authors\":\"Vinoth Kumar Jayakumar, Amarkarthik Arunachalam\",\"doi\":\"10.1177/09576509231197035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The realm of sustainable energy systems has seen the salt gradient solar pond (SGSP) emerge as an eco-friendly solution for thermal energy storage. This research explores the use of an East-West (EW) reflector and coal cinder additive (CC) to enhance the energy efficiency of the inner zones of a salt gradient trapezoidal solar pond (SGTSP). In this work, SGTSP with EW and CC systems were designed, fabricated, and analyzed based on an energy point of view and compared with standard SGTSP systems. It also provides a shading area analysis based on the slant angle of the SGSP system, offering valuable insights into the system’s performance for low-grade heat source thermal applications. The study found that the EW reflector significantly increased the average solar intensity by 33.2%. The addition of coal cinder additive raised the average temperature of the lower convection zone by 24.1%. The SGTSP with EW reflector and coal cinder (SGTSP-EWR&CC) reached a maximum average temperature of 83.85°C, with a 42% higher energy efficiency in the lower convection zone compared to the conventional SGTSP (SGTSP-C). Further, the SGTSP’s potential for thermal energy storage and providing practical strategies for enhancing its energy efficiency is showcased.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509231197035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509231197035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Enhancing energy efficiency in trapezoidal solar ponds: A synergistic approach utilizing east-west reflector and coal cinder – An energy analysis study
The realm of sustainable energy systems has seen the salt gradient solar pond (SGSP) emerge as an eco-friendly solution for thermal energy storage. This research explores the use of an East-West (EW) reflector and coal cinder additive (CC) to enhance the energy efficiency of the inner zones of a salt gradient trapezoidal solar pond (SGTSP). In this work, SGTSP with EW and CC systems were designed, fabricated, and analyzed based on an energy point of view and compared with standard SGTSP systems. It also provides a shading area analysis based on the slant angle of the SGSP system, offering valuable insights into the system’s performance for low-grade heat source thermal applications. The study found that the EW reflector significantly increased the average solar intensity by 33.2%. The addition of coal cinder additive raised the average temperature of the lower convection zone by 24.1%. The SGTSP with EW reflector and coal cinder (SGTSP-EWR&CC) reached a maximum average temperature of 83.85°C, with a 42% higher energy efficiency in the lower convection zone compared to the conventional SGTSP (SGTSP-C). Further, the SGTSP’s potential for thermal energy storage and providing practical strategies for enhancing its energy efficiency is showcased.
期刊介绍:
The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.