150nm完全集成的有源淬火电路驱动定制技术SPAD在250Mcps

A. Giudici, G. Acconcia, I. Labanca, M. Ghioni, I. Rech
{"title":"150nm完全集成的有源淬火电路驱动定制技术SPAD在250Mcps","authors":"A. Giudici, G. Acconcia, I. Labanca, M. Ghioni, I. Rech","doi":"10.1117/12.2636068","DOIUrl":null,"url":null,"abstract":"Single Photon Avalanche Diodes (SPADs) are the enabling device for different kind of applications in which low noise, high photon detection efficiency, and compactness are required. They are capable of providing high photon count rate and picosecond timing precision. Furthermore, they can be fabricated in arrays, unlocking very high-count rates and the possibility to retrieve also incident photon’s spatial information. For these reasons, SPADs are the sensors of choice in many applications such as Light detection and ranging (LiDAR), Time Correlated Single Photon counting (TCSPC) and quantum key distribution (QKD). Whether the SPAD is implemented in a custom technology, allowing detector tailoring on specific application constraints, or in a CMOS process, with great benefits in terms of large-scale integration and compactness, a quenching circuit is always required, and it sets the ultimate performance that can be extracted from this sensor. The custom approach for SPAD fabrication poses a challenge in the design of the external quenching circuit mainly due to the parasitics (capacitance, wire-bonding inductance, etc.) that intrinsically come with having the detector and the circuit on two separate silicon dies, which is potentially a limiting factor for speed and timing precision. In this work, we present a fully-integrated active quenching circuit capable of driving external custom SPADs up to 250 Mcps. The circuit has been fabricated exploiting a 150nm high voltage technology and extensively tested with a custom SPAD.","PeriodicalId":52940,"journal":{"name":"Security and Defence Quarterly","volume":"26 1","pages":"122740C - 122740C-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 150nm fully integrated active quenching circuit driving custom technology SPAD at 250Mcps\",\"authors\":\"A. Giudici, G. Acconcia, I. Labanca, M. Ghioni, I. Rech\",\"doi\":\"10.1117/12.2636068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single Photon Avalanche Diodes (SPADs) are the enabling device for different kind of applications in which low noise, high photon detection efficiency, and compactness are required. They are capable of providing high photon count rate and picosecond timing precision. Furthermore, they can be fabricated in arrays, unlocking very high-count rates and the possibility to retrieve also incident photon’s spatial information. For these reasons, SPADs are the sensors of choice in many applications such as Light detection and ranging (LiDAR), Time Correlated Single Photon counting (TCSPC) and quantum key distribution (QKD). Whether the SPAD is implemented in a custom technology, allowing detector tailoring on specific application constraints, or in a CMOS process, with great benefits in terms of large-scale integration and compactness, a quenching circuit is always required, and it sets the ultimate performance that can be extracted from this sensor. The custom approach for SPAD fabrication poses a challenge in the design of the external quenching circuit mainly due to the parasitics (capacitance, wire-bonding inductance, etc.) that intrinsically come with having the detector and the circuit on two separate silicon dies, which is potentially a limiting factor for speed and timing precision. In this work, we present a fully-integrated active quenching circuit capable of driving external custom SPADs up to 250 Mcps. The circuit has been fabricated exploiting a 150nm high voltage technology and extensively tested with a custom SPAD.\",\"PeriodicalId\":52940,\"journal\":{\"name\":\"Security and Defence Quarterly\",\"volume\":\"26 1\",\"pages\":\"122740C - 122740C-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Defence Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2636068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Defence Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2636068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单光子雪崩二极管(spad)是低噪声、高光子探测效率和紧凑性要求的各种应用的使能器件。它们能够提供高光子计数率和皮秒计时精度。此外,它们可以在阵列中制造,解锁非常高的计数率和检索入射光子空间信息的可能性。由于这些原因,spad是许多应用中的首选传感器,例如光探测和测距(LiDAR),时间相关单光子计数(TCSPC)和量子密钥分发(QKD)。无论SPAD是在定制技术中实现的,允许探测器根据特定的应用限制进行定制,还是在CMOS工艺中实现的,在大规模集成和紧凑性方面都有很大的好处,始终需要淬火电路,它设置了可以从该传感器中提取的最终性能。SPAD制造的定制方法在外部淬火电路的设计中提出了一个挑战,主要是由于寄生(电容,线键合电感等),这些寄生(电容,线键合电感等)本质上是由两个独立的硅模具上的探测器和电路所带来的,这可能是速度和定时精度的限制因素。在这项工作中,我们提出了一个完全集成的有源淬火电路,能够驱动高达250 Mcps的外部定制spad。该电路利用150nm高压技术制造,并在定制SPAD上进行了广泛测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 150nm fully integrated active quenching circuit driving custom technology SPAD at 250Mcps
Single Photon Avalanche Diodes (SPADs) are the enabling device for different kind of applications in which low noise, high photon detection efficiency, and compactness are required. They are capable of providing high photon count rate and picosecond timing precision. Furthermore, they can be fabricated in arrays, unlocking very high-count rates and the possibility to retrieve also incident photon’s spatial information. For these reasons, SPADs are the sensors of choice in many applications such as Light detection and ranging (LiDAR), Time Correlated Single Photon counting (TCSPC) and quantum key distribution (QKD). Whether the SPAD is implemented in a custom technology, allowing detector tailoring on specific application constraints, or in a CMOS process, with great benefits in terms of large-scale integration and compactness, a quenching circuit is always required, and it sets the ultimate performance that can be extracted from this sensor. The custom approach for SPAD fabrication poses a challenge in the design of the external quenching circuit mainly due to the parasitics (capacitance, wire-bonding inductance, etc.) that intrinsically come with having the detector and the circuit on two separate silicon dies, which is potentially a limiting factor for speed and timing precision. In this work, we present a fully-integrated active quenching circuit capable of driving external custom SPADs up to 250 Mcps. The circuit has been fabricated exploiting a 150nm high voltage technology and extensively tested with a custom SPAD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
9 weeks
期刊最新文献
Role of the private sector within Latvia’s strategic defence documents: Dimensions of psychological resilience and strategic communication Anti-terrorist cooperation as part of Poland’s geopolitical shift. “Operation Bridge” and the rise of a strategic partnership with the United States The role of military morale as an essential dimension of combat power Gender diversity management in NATO for sustainable security and peace SCADvanceXP—an intelligent Polish system for threat detection and monitoring of industrial networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1