{"title":"基于机器学习的非常规油藏递减率预测","authors":"Subhrajyoti Bhattacharyya, Aditya Vyas","doi":"10.1016/j.upstre.2022.100064","DOIUrl":null,"url":null,"abstract":"<div><p><span>The main objective of this paper is to develop a novel machine learning based model that can accurately predict the decline curves and EUR (Estimated Ultimate Recovery) for new wells based on the data collected from nearby wells. This is because decline curves are easier and faster alternative to complex reservoir simulators which perform computationally expensive operations. In contrast to this, decline curves require only a few parameters in the equation which can be easily collected from the existing data of the wells. In this study, first we collected the well data corresponding to well parameters such as initial monthly oil flow rate (</span><span><math><msub><mi>q</mi><mi>i</mi></msub></math></span><span>), well completion parameters (i.e., no. of fracturing stages, completed length, amount of proppant<span><span> used, amount of fracturing fluid used), well location parameters (TVD Heel-Toe Difference), reservoir fluid<span><span> properties (Oil API Gravity, initial 24 h period Gas-Oil Ratio (GOR), initial 24 h period Gas Produced, initial 24 h period Oil Produced), flowing tubing pressure, casing pressure tubing size,choke size from publicly available databases of the </span>Eagle Ford Shale<span> formation Texas RRC (Railroad Commission of Texas). Wells were selected randomly and only those wells were finally included for the study whose data of the all the required parameters were available. The model parameters were estimated by fitting the production data to the decline curve models. Artificial Neural Network (ANN) was employed to build Machine learning models as a function of the above well parameters for the corresponding model parameters. The decline curves for new or existing wells were rapidly predicted using these models. In order to estimate the predictive accuracy of these models when applied to new or test wells </span></span></span>cross validation technique such as k-fold cross validation was employed. These models were also used to predict EUR for the test wells. Additionally, feature selection was also done using algorithms such as Chi Square Test (χ2) and </span></span><span>Minimum Redundancy Maximum Relevance (MRMR) Algorithm</span><svg><path></path></svg><span><span> to determine the relative importance of predictor variables in predicting EUR. The predictor variables were successfully linked to SEDM (Stretched </span>Exponential Decline<span> Model) decline curve parameters (n and τ) in a random set of oil field well data. The relative influences of various well parameters were also examined to determine the hidden relationship between them. The novelty in this study lies in the algorithm and dataset that we used for the rate decline prediction in Eagle Ford data set. Although, this paper has referenced some previous papers where machine learning has been used to make prediction, but this paper presents use of new algorithm as well as a new dataset. As more data gets available, there is definitely extra room for further data analysis and improved results using machine learning methods. In future, the number of wells can be increased and the updated results can again be submitted after investing more time. It should be noted here that data downloading and preparing takes most of the time for such study especially when dealing with oil and gas data.</span></span></p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"8 ","pages":"Article 100064"},"PeriodicalIF":2.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Machine learning based rate decline prediction in unconventional reservoirs\",\"authors\":\"Subhrajyoti Bhattacharyya, Aditya Vyas\",\"doi\":\"10.1016/j.upstre.2022.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The main objective of this paper is to develop a novel machine learning based model that can accurately predict the decline curves and EUR (Estimated Ultimate Recovery) for new wells based on the data collected from nearby wells. This is because decline curves are easier and faster alternative to complex reservoir simulators which perform computationally expensive operations. In contrast to this, decline curves require only a few parameters in the equation which can be easily collected from the existing data of the wells. In this study, first we collected the well data corresponding to well parameters such as initial monthly oil flow rate (</span><span><math><msub><mi>q</mi><mi>i</mi></msub></math></span><span>), well completion parameters (i.e., no. of fracturing stages, completed length, amount of proppant<span><span> used, amount of fracturing fluid used), well location parameters (TVD Heel-Toe Difference), reservoir fluid<span><span> properties (Oil API Gravity, initial 24 h period Gas-Oil Ratio (GOR), initial 24 h period Gas Produced, initial 24 h period Oil Produced), flowing tubing pressure, casing pressure tubing size,choke size from publicly available databases of the </span>Eagle Ford Shale<span> formation Texas RRC (Railroad Commission of Texas). Wells were selected randomly and only those wells were finally included for the study whose data of the all the required parameters were available. The model parameters were estimated by fitting the production data to the decline curve models. Artificial Neural Network (ANN) was employed to build Machine learning models as a function of the above well parameters for the corresponding model parameters. The decline curves for new or existing wells were rapidly predicted using these models. In order to estimate the predictive accuracy of these models when applied to new or test wells </span></span></span>cross validation technique such as k-fold cross validation was employed. These models were also used to predict EUR for the test wells. Additionally, feature selection was also done using algorithms such as Chi Square Test (χ2) and </span></span><span>Minimum Redundancy Maximum Relevance (MRMR) Algorithm</span><svg><path></path></svg><span><span> to determine the relative importance of predictor variables in predicting EUR. The predictor variables were successfully linked to SEDM (Stretched </span>Exponential Decline<span> Model) decline curve parameters (n and τ) in a random set of oil field well data. The relative influences of various well parameters were also examined to determine the hidden relationship between them. The novelty in this study lies in the algorithm and dataset that we used for the rate decline prediction in Eagle Ford data set. Although, this paper has referenced some previous papers where machine learning has been used to make prediction, but this paper presents use of new algorithm as well as a new dataset. As more data gets available, there is definitely extra room for further data analysis and improved results using machine learning methods. In future, the number of wells can be increased and the updated results can again be submitted after investing more time. It should be noted here that data downloading and preparing takes most of the time for such study especially when dealing with oil and gas data.</span></span></p></div>\",\"PeriodicalId\":101264,\"journal\":{\"name\":\"Upstream Oil and Gas Technology\",\"volume\":\"8 \",\"pages\":\"Article 100064\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upstream Oil and Gas Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666260422000019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666260422000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Machine learning based rate decline prediction in unconventional reservoirs
The main objective of this paper is to develop a novel machine learning based model that can accurately predict the decline curves and EUR (Estimated Ultimate Recovery) for new wells based on the data collected from nearby wells. This is because decline curves are easier and faster alternative to complex reservoir simulators which perform computationally expensive operations. In contrast to this, decline curves require only a few parameters in the equation which can be easily collected from the existing data of the wells. In this study, first we collected the well data corresponding to well parameters such as initial monthly oil flow rate (), well completion parameters (i.e., no. of fracturing stages, completed length, amount of proppant used, amount of fracturing fluid used), well location parameters (TVD Heel-Toe Difference), reservoir fluid properties (Oil API Gravity, initial 24 h period Gas-Oil Ratio (GOR), initial 24 h period Gas Produced, initial 24 h period Oil Produced), flowing tubing pressure, casing pressure tubing size,choke size from publicly available databases of the Eagle Ford Shale formation Texas RRC (Railroad Commission of Texas). Wells were selected randomly and only those wells were finally included for the study whose data of the all the required parameters were available. The model parameters were estimated by fitting the production data to the decline curve models. Artificial Neural Network (ANN) was employed to build Machine learning models as a function of the above well parameters for the corresponding model parameters. The decline curves for new or existing wells were rapidly predicted using these models. In order to estimate the predictive accuracy of these models when applied to new or test wells cross validation technique such as k-fold cross validation was employed. These models were also used to predict EUR for the test wells. Additionally, feature selection was also done using algorithms such as Chi Square Test (χ2) and Minimum Redundancy Maximum Relevance (MRMR) Algorithm to determine the relative importance of predictor variables in predicting EUR. The predictor variables were successfully linked to SEDM (Stretched Exponential Decline Model) decline curve parameters (n and τ) in a random set of oil field well data. The relative influences of various well parameters were also examined to determine the hidden relationship between them. The novelty in this study lies in the algorithm and dataset that we used for the rate decline prediction in Eagle Ford data set. Although, this paper has referenced some previous papers where machine learning has been used to make prediction, but this paper presents use of new algorithm as well as a new dataset. As more data gets available, there is definitely extra room for further data analysis and improved results using machine learning methods. In future, the number of wells can be increased and the updated results can again be submitted after investing more time. It should be noted here that data downloading and preparing takes most of the time for such study especially when dealing with oil and gas data.