无细胞血红蛋白介导的低密度脂蛋白(oxLDL)氧化有助于败血症期间肺微血管内皮功能障碍

IF 5.3 2区 医学 Q1 PHYSIOLOGY Physiology Pub Date : 2023-05-01 DOI:10.1152/physiol.2023.38.s1.5728289
J. Meegan, L. Ware, J. Bastarache
{"title":"无细胞血红蛋白介导的低密度脂蛋白(oxLDL)氧化有助于败血症期间肺微血管内皮功能障碍","authors":"J. Meegan, L. Ware, J. Bastarache","doi":"10.1152/physiol.2023.38.s1.5728289","DOIUrl":null,"url":null,"abstract":"Introduction: Disruption of the microvascular endothelial barrier is a critical pathological feature of sepsis-induced acute lung injury. Plasma cell-free hemoglobin (CFH) is elevated in approximately 80% of patients with sepsis and is independently associated with development of acute respiratory distress syndrome (ARDS) and mortality. Oxidized CFH (ferric, 3+) can oxidize low-density lipoprotein (oxLDL), which signals through its major endothelial receptor, the lectin-like oxidized LDL receptor 1 (LOX-1), to cause endothelial dysfunction through several pro-inflammatory pathways including activation of mitogen-activated protein kinases (MAPKs). However, little is known regarding whether LOX-1 receptor signaling leads to microvascular endothelial hyperpermeability or acute lung injury, especially in the context of sepsis. We hypothesized that oxidation of LDL by CFH contributes to lung microvascular endothelial barrier dysfunction and worse outcomes during sepsis through LOX-1 and downstream p38 MAPK. Methods: To test whether generation of oxLDL by CFH is associated with endothelial injury in clinical sepsis, circulating levels of CFH, oxLDL, and vascular injury marker sVE-cadherin were measured in 24 sepsis patients via ELISA and tested for association with development of ARDS. LDL was oxidized by combining LDL with CFH in a test tube overnight at 37°C and oxLDL was quantified by TBARS assay. In primary human lung microvascular endothelial cells (HLMVEC) transendothelial electrical resistance (TER), a measure of barrier dysfunction, was assessed by Electric Cell-substrate Impedance Sensing (ECIS). LOX-1 receptor was blocked using BI-0115 (Boehringer Ingelheim, 20 μM) and p38 MAPK was inhibited using NiPp (100 μM). Results: In sepsis patients, plasma oxLDL levels correlated with CFH (r=0.686, p=0.016) and sVE-cadherin (r=0.603, p=0.012), and tended to be higher in those who developed ARDS (38 U/L [IQR 27, 45] vs. 27 U/L [IQR 19, 35], p=0.1). Oxidation of LDL by CFH exacerbated HLMVEC barrier dysfunction compared to control, LDL, or CFH. Barrier dysfunction induced by CFH or oxLDL was attenuated by blocking the LOX-1 receptor or p38 MAPK. Conclusions: Increased plasma CFH and oxLDL are associated with vascular injury during clinical sepsis; one mechanism by which CFH may cause vascular hyperpermeability and sepsis-mediated lung injury is through oxidation of LDL which can drive signaling through the endothelial LOX-1 receptor and activation of p38 MAPK. NIH R35HL150783, R21GM144915, R01HL158906, R01HL164937, T32HL094296; Parker B. Francis Fellowship This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"78 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-free hemoglobin-mediated oxidation of low-density lipoprotein (oxLDL) contributes to lung microvascular endothelial dysfunction during sepsis\",\"authors\":\"J. Meegan, L. Ware, J. Bastarache\",\"doi\":\"10.1152/physiol.2023.38.s1.5728289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Disruption of the microvascular endothelial barrier is a critical pathological feature of sepsis-induced acute lung injury. Plasma cell-free hemoglobin (CFH) is elevated in approximately 80% of patients with sepsis and is independently associated with development of acute respiratory distress syndrome (ARDS) and mortality. Oxidized CFH (ferric, 3+) can oxidize low-density lipoprotein (oxLDL), which signals through its major endothelial receptor, the lectin-like oxidized LDL receptor 1 (LOX-1), to cause endothelial dysfunction through several pro-inflammatory pathways including activation of mitogen-activated protein kinases (MAPKs). However, little is known regarding whether LOX-1 receptor signaling leads to microvascular endothelial hyperpermeability or acute lung injury, especially in the context of sepsis. We hypothesized that oxidation of LDL by CFH contributes to lung microvascular endothelial barrier dysfunction and worse outcomes during sepsis through LOX-1 and downstream p38 MAPK. Methods: To test whether generation of oxLDL by CFH is associated with endothelial injury in clinical sepsis, circulating levels of CFH, oxLDL, and vascular injury marker sVE-cadherin were measured in 24 sepsis patients via ELISA and tested for association with development of ARDS. LDL was oxidized by combining LDL with CFH in a test tube overnight at 37°C and oxLDL was quantified by TBARS assay. In primary human lung microvascular endothelial cells (HLMVEC) transendothelial electrical resistance (TER), a measure of barrier dysfunction, was assessed by Electric Cell-substrate Impedance Sensing (ECIS). LOX-1 receptor was blocked using BI-0115 (Boehringer Ingelheim, 20 μM) and p38 MAPK was inhibited using NiPp (100 μM). Results: In sepsis patients, plasma oxLDL levels correlated with CFH (r=0.686, p=0.016) and sVE-cadherin (r=0.603, p=0.012), and tended to be higher in those who developed ARDS (38 U/L [IQR 27, 45] vs. 27 U/L [IQR 19, 35], p=0.1). Oxidation of LDL by CFH exacerbated HLMVEC barrier dysfunction compared to control, LDL, or CFH. Barrier dysfunction induced by CFH or oxLDL was attenuated by blocking the LOX-1 receptor or p38 MAPK. Conclusions: Increased plasma CFH and oxLDL are associated with vascular injury during clinical sepsis; one mechanism by which CFH may cause vascular hyperpermeability and sepsis-mediated lung injury is through oxidation of LDL which can drive signaling through the endothelial LOX-1 receptor and activation of p38 MAPK. NIH R35HL150783, R21GM144915, R01HL158906, R01HL164937, T32HL094296; Parker B. Francis Fellowship This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.\",\"PeriodicalId\":49694,\"journal\":{\"name\":\"Physiology\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physiol.2023.38.s1.5728289\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.2023.38.s1.5728289","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微血管内皮屏障的破坏是脓毒症引起的急性肺损伤的一个重要病理特征。大约80%的脓毒症患者血浆无细胞血红蛋白(CFH)升高,并且与急性呼吸窘迫综合征(ARDS)的发展和死亡率独立相关。氧化CFH(铁,3+)可以氧化低密度脂蛋白(oxLDL), oxLDL通过其主要内皮受体,凝集素样氧化LDL受体1 (LOX-1)发出信号,通过几种促炎途径,包括激活丝裂原活化蛋白激酶(MAPKs),导致内皮功能障碍。然而,对于LOX-1受体信号传导是否导致微血管内皮高通透性或急性肺损伤,特别是在脓毒症的背景下,知之甚少。我们假设CFH氧化LDL通过LOX-1和下游p38 MAPK导致败血症期间肺微血管内皮屏障功能障碍和更糟糕的结果。方法:为检测CFH生成oxLDL是否与临床败血症中内皮损伤相关,采用ELISA法检测24例败血症患者循环CFH、oxLDL和血管损伤标志物sve -钙粘蛋白水平,并检测其与ARDS发生的相关性。LDL与CFH在37°C的试管中结合过夜氧化,oxLDL用TBARS法定量。在原代人肺微血管内皮细胞(HLMVEC)中,跨内皮电阻(TER)是一种屏障功能障碍的测量方法,采用细胞-基质阻抗感应(ECIS)进行评估。使用BI-0115(勃林格殷格翰,20 μM)阻断LOX-1受体,使用NiPp (100 μM)抑制p38 MAPK。结果:脓毒症患者血浆oxLDL水平与CFH (r=0.686, p=0.016)和sVE-cadherin (r=0.603, p=0.012)相关,并发ARDS患者血浆oxLDL水平更高(38 U/L [IQR 27,45] vs. 27 U/L [IQR 19,35], p=0.1)。与对照组、低密度脂蛋白或CFH相比,CFH氧化LDL加重了HLMVEC屏障功能障碍。CFH或oxLDL诱导的屏障功能障碍可通过阻断LOX-1受体或p38 MAPK来减弱。结论:临床败血症时血浆CFH和oxLDL升高与血管损伤有关;CFH可能导致血管高通透性和败血症介导的肺损伤的一种机制是通过LDL的氧化,其可以通过内皮LOX-1受体驱动信号传导和p38 MAPK的激活。Nih r35hl150783, r21gm144915, r01hl158906, r01hl164937, t32hl094296;这是2023年美国生理学峰会上发表的完整摘要,仅以HTML格式提供。此摘要没有附加版本或附加内容。生理学没有参与同行评议过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell-free hemoglobin-mediated oxidation of low-density lipoprotein (oxLDL) contributes to lung microvascular endothelial dysfunction during sepsis
Introduction: Disruption of the microvascular endothelial barrier is a critical pathological feature of sepsis-induced acute lung injury. Plasma cell-free hemoglobin (CFH) is elevated in approximately 80% of patients with sepsis and is independently associated with development of acute respiratory distress syndrome (ARDS) and mortality. Oxidized CFH (ferric, 3+) can oxidize low-density lipoprotein (oxLDL), which signals through its major endothelial receptor, the lectin-like oxidized LDL receptor 1 (LOX-1), to cause endothelial dysfunction through several pro-inflammatory pathways including activation of mitogen-activated protein kinases (MAPKs). However, little is known regarding whether LOX-1 receptor signaling leads to microvascular endothelial hyperpermeability or acute lung injury, especially in the context of sepsis. We hypothesized that oxidation of LDL by CFH contributes to lung microvascular endothelial barrier dysfunction and worse outcomes during sepsis through LOX-1 and downstream p38 MAPK. Methods: To test whether generation of oxLDL by CFH is associated with endothelial injury in clinical sepsis, circulating levels of CFH, oxLDL, and vascular injury marker sVE-cadherin were measured in 24 sepsis patients via ELISA and tested for association with development of ARDS. LDL was oxidized by combining LDL with CFH in a test tube overnight at 37°C and oxLDL was quantified by TBARS assay. In primary human lung microvascular endothelial cells (HLMVEC) transendothelial electrical resistance (TER), a measure of barrier dysfunction, was assessed by Electric Cell-substrate Impedance Sensing (ECIS). LOX-1 receptor was blocked using BI-0115 (Boehringer Ingelheim, 20 μM) and p38 MAPK was inhibited using NiPp (100 μM). Results: In sepsis patients, plasma oxLDL levels correlated with CFH (r=0.686, p=0.016) and sVE-cadherin (r=0.603, p=0.012), and tended to be higher in those who developed ARDS (38 U/L [IQR 27, 45] vs. 27 U/L [IQR 19, 35], p=0.1). Oxidation of LDL by CFH exacerbated HLMVEC barrier dysfunction compared to control, LDL, or CFH. Barrier dysfunction induced by CFH or oxLDL was attenuated by blocking the LOX-1 receptor or p38 MAPK. Conclusions: Increased plasma CFH and oxLDL are associated with vascular injury during clinical sepsis; one mechanism by which CFH may cause vascular hyperpermeability and sepsis-mediated lung injury is through oxidation of LDL which can drive signaling through the endothelial LOX-1 receptor and activation of p38 MAPK. NIH R35HL150783, R21GM144915, R01HL158906, R01HL164937, T32HL094296; Parker B. Francis Fellowship This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
期刊最新文献
Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Buoyancy Regulation in Insects. Microtubule Reorganization and Quiescence: an Intertwined Relationship. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Olfactory Development and Dysfunction: Involvement of Microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1