建立了一种基于模糊认知地图的道路交通流仿真宏观模型

IF 0.9 Q4 TELECOMMUNICATIONS Infocommunications Journal Pub Date : 2021-01-01 DOI:10.36244/icj.2021.3.2
Mehran Amini, Hatwagn Miklos F., G. Mikulai, L. Kóczy
{"title":"建立了一种基于模糊认知地图的道路交通流仿真宏观模型","authors":"Mehran Amini, Hatwagn Miklos F., G. Mikulai, L. Kóczy","doi":"10.36244/icj.2021.3.2","DOIUrl":null,"url":null,"abstract":"Fuzzy cognitive maps (FCM) have been broadly employed to analyze complex and decidedly uncertain systems in modeling, forecasting, decision making, etc. Road traffic flow is also notoriously known as a highly uncertain nonlinear and complex system. Even though applications of FCM in risk analysis have been presented in various engineering fields, this research aims at modeling road traffic flow based on macroscopic characteristics through FCM. Therefore, a simulation of variables involved with road traffic flow carried out through FCM reasoning on historical data collected from the e-toll dataset of Hungarian networks of freeways. The proposed FCM model is developed based on 58 selected freeway segments as the “concepts” of the FCM; moreover, a new inference rule for employing in FCM reasoning process along with its algorithms have been presented. The results illustrate FCM representation and computation of the real segments with their main road traffic-related characteristics that have reached an equilibrium point. Furthermore, a simulation of the road traffic flow by performing the analysis of customized scenarios is presented, through which macroscopic modeling objectives such as predicting future road traffic flow state, route guidance in various scenarios, freeway geometric characteristics indication, and effectual mobility can be evaluated.","PeriodicalId":42504,"journal":{"name":"Infocommunications Journal","volume":"64 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Developing a macroscopic model based on fuzzy cognitive map for road traffic flow simulation\",\"authors\":\"Mehran Amini, Hatwagn Miklos F., G. Mikulai, L. Kóczy\",\"doi\":\"10.36244/icj.2021.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy cognitive maps (FCM) have been broadly employed to analyze complex and decidedly uncertain systems in modeling, forecasting, decision making, etc. Road traffic flow is also notoriously known as a highly uncertain nonlinear and complex system. Even though applications of FCM in risk analysis have been presented in various engineering fields, this research aims at modeling road traffic flow based on macroscopic characteristics through FCM. Therefore, a simulation of variables involved with road traffic flow carried out through FCM reasoning on historical data collected from the e-toll dataset of Hungarian networks of freeways. The proposed FCM model is developed based on 58 selected freeway segments as the “concepts” of the FCM; moreover, a new inference rule for employing in FCM reasoning process along with its algorithms have been presented. The results illustrate FCM representation and computation of the real segments with their main road traffic-related characteristics that have reached an equilibrium point. Furthermore, a simulation of the road traffic flow by performing the analysis of customized scenarios is presented, through which macroscopic modeling objectives such as predicting future road traffic flow state, route guidance in various scenarios, freeway geometric characteristics indication, and effectual mobility can be evaluated.\",\"PeriodicalId\":42504,\"journal\":{\"name\":\"Infocommunications Journal\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infocommunications Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2021.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infocommunications Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2021.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

模糊认知图(FCM)在建模、预测、决策等方面被广泛应用于分析复杂且绝对不确定的系统。众所周知,道路交通流是一个高度不确定的非线性复杂系统。尽管FCM在风险分析中的应用已经出现在各个工程领域,但本研究的目的是通过FCM基于宏观特征对道路交通流进行建模。因此,通过FCM推理,对从匈牙利高速公路网络的电子收费数据集收集的历史数据进行了与道路交通流相关的变量的模拟。提出的FCM模型是基于58个选定的高速公路段作为FCM的“概念”;此外,还提出了一种新的用于FCM推理过程的推理规则及其算法。结果说明了达到平衡点的具有主要道路交通相关特征的真实路段的FCM表示和计算。在此基础上,通过对定制场景的分析,对道路交通流进行仿真,从而对未来道路交通流状态预测、不同场景下的路径引导、高速公路几何特征指示、有效机动性等宏观建模目标进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a macroscopic model based on fuzzy cognitive map for road traffic flow simulation
Fuzzy cognitive maps (FCM) have been broadly employed to analyze complex and decidedly uncertain systems in modeling, forecasting, decision making, etc. Road traffic flow is also notoriously known as a highly uncertain nonlinear and complex system. Even though applications of FCM in risk analysis have been presented in various engineering fields, this research aims at modeling road traffic flow based on macroscopic characteristics through FCM. Therefore, a simulation of variables involved with road traffic flow carried out through FCM reasoning on historical data collected from the e-toll dataset of Hungarian networks of freeways. The proposed FCM model is developed based on 58 selected freeway segments as the “concepts” of the FCM; moreover, a new inference rule for employing in FCM reasoning process along with its algorithms have been presented. The results illustrate FCM representation and computation of the real segments with their main road traffic-related characteristics that have reached an equilibrium point. Furthermore, a simulation of the road traffic flow by performing the analysis of customized scenarios is presented, through which macroscopic modeling objectives such as predicting future road traffic flow state, route guidance in various scenarios, freeway geometric characteristics indication, and effectual mobility can be evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infocommunications Journal
Infocommunications Journal TELECOMMUNICATIONS-
CiteScore
1.90
自引率
27.30%
发文量
0
期刊最新文献
Evolution of Digitization toward the Internet of Digital & Cognitive Realities and Smart Ecosystems On the Convex Hull of the Achievable Capacity Region of the Two User FDM OMA Downlink A game theoretic framework for controlling the behavior of a content seeking to be popular on social networking sites In-network DDoS detection and mitigation using INT data for IoT ecosystem Optimizing the Performance of the Iptables Stateful NAT44 Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1