{"title":"进一步修改SCS-CN方法","authors":"S. Verma, R. K. Verma","doi":"10.2166/ws.2023.129","DOIUrl":null,"url":null,"abstract":"\n \n This paper further modifies soil conservation service curve number (SCS-CN) based on the concept of adjusting the rainfall in accordance with rain duration and considering the initial abstraction (Ia) as a fraction of rainfall for runoff estimation. The former yields Model M3 and its explicit form with constant parameter λ = 0.2 is designated as Model M4. Model M5 couples both the concepts and thus all these models are the advanced versions. The applicability of all the five models is tested using a large number of rainfall-runoff events (25,502) derived from 53 U.S. Department of Agriculture-Agricultural Research Service watersheds. Models M3–M5 performed better than Models M1 and M2. Model performance is evaluated by employing six statistical measures, namely, root mean square error, mean absolute error, normalized root mean square error, Nash–Sutcliffe coefficient (%), percent Bias, RSR, n(t), and several grading criteria. Results show Model M5 to have performed the best of all in both calibration and validation largely due to its incorporating the impact of rain duration and allowing Ia to vary with rainfall, which is close to reality and not accounted for in any other models considered in this study.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"34 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCS-CN methodology further modified\",\"authors\":\"S. Verma, R. K. Verma\",\"doi\":\"10.2166/ws.2023.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This paper further modifies soil conservation service curve number (SCS-CN) based on the concept of adjusting the rainfall in accordance with rain duration and considering the initial abstraction (Ia) as a fraction of rainfall for runoff estimation. The former yields Model M3 and its explicit form with constant parameter λ = 0.2 is designated as Model M4. Model M5 couples both the concepts and thus all these models are the advanced versions. The applicability of all the five models is tested using a large number of rainfall-runoff events (25,502) derived from 53 U.S. Department of Agriculture-Agricultural Research Service watersheds. Models M3–M5 performed better than Models M1 and M2. Model performance is evaluated by employing six statistical measures, namely, root mean square error, mean absolute error, normalized root mean square error, Nash–Sutcliffe coefficient (%), percent Bias, RSR, n(t), and several grading criteria. Results show Model M5 to have performed the best of all in both calibration and validation largely due to its incorporating the impact of rain duration and allowing Ia to vary with rainfall, which is close to reality and not accounted for in any other models considered in this study.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
This paper further modifies soil conservation service curve number (SCS-CN) based on the concept of adjusting the rainfall in accordance with rain duration and considering the initial abstraction (Ia) as a fraction of rainfall for runoff estimation. The former yields Model M3 and its explicit form with constant parameter λ = 0.2 is designated as Model M4. Model M5 couples both the concepts and thus all these models are the advanced versions. The applicability of all the five models is tested using a large number of rainfall-runoff events (25,502) derived from 53 U.S. Department of Agriculture-Agricultural Research Service watersheds. Models M3–M5 performed better than Models M1 and M2. Model performance is evaluated by employing six statistical measures, namely, root mean square error, mean absolute error, normalized root mean square error, Nash–Sutcliffe coefficient (%), percent Bias, RSR, n(t), and several grading criteria. Results show Model M5 to have performed the best of all in both calibration and validation largely due to its incorporating the impact of rain duration and allowing Ia to vary with rainfall, which is close to reality and not accounted for in any other models considered in this study.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.